In terms of the ultrapower construction, the hyperreal line *R is defined as the collection of equivalence classes of sequences ⟨ u n , n = 1 , 2 , … ⟩ {\displaystyle \langle u_{n},n=1,2,\ldots \rangle } of real numbers un. Namely, the equivalence class defines a hyperreal, denoted [ u n ] {\displaystyle [u_{n}]} in Goldblatt's notation. Similarly, an arbitrary hyperfinite set in *R is of the form [ A n ] {\displaystyle [A_{n}]} , and is defined by a sequence ⟨ A n ⟩ {\displaystyle \langle A_{n}\rangle } of finite sets A n ⊆ R , n = 1 , 2 , … {\displaystyle A_{n}\subseteq \mathbb {R} ,n=1,2,\ldots } 6
J. E. Rubio (1994). Optimization and nonstandard analysis. Marcel Dekker. p. 110. ISBN 0-8247-9281-5. 0-8247-9281-5 ↩
R. Chuaqui (1991). Truth, possibility, and probability: new logical foundations of probability and statistical inference. Elsevier. pp. 182–3. ISBN 0-444-88840-3. 0-444-88840-3 ↩
L. Ambrosio; et al. (2000). Calculus of variations and partial differential equations: topics on geometrical evolution problems and degree theory. Springer. p. 203. ISBN 3-540-64803-8. 3-540-64803-8 ↩
Rob Goldblatt (1998). Lectures on the hyperreals. An introduction to nonstandard analysis. Springer. p. 188. ISBN 0-387-98464-X. 0-387-98464-X ↩