are all read-once (as are the other functions obtained by permuting the variables in these expressions). However, the Boolean median operation, given by the expression
(
a
∨
b
)
∧
(
a
∨
c
)
∧
(
b
∨
c
)
{\displaystyle (a\vee b)\wedge (a\vee c)\wedge (b\vee c)}
is not read-once: this formula has more than one copy of each variable, and there is no equivalent formula that uses each variable only once.
Another alternative characterization of positive read-once functions combines their disjunctive and conjunctive normal form. A positive function of a given system of variables, that uses all of its variables, is read-once if and only if every prime implicant of the disjunctive normal form and every clause of the conjunctive normal form have exactly one variable in common.
It is possible to recognize read-once functions from their disjunctive normal form expressions in polynomial time.
It is also possible to find a read-once expression for a positive read-once function, given access to the function only through a "black box" that allows its evaluation at any truth assignment, using only a quadratic number of function evaluations.
Golumbic & Gurvich (2011), p. 519. - Golumbic, Martin C.; Gurvich, Vladimir (2011), "Read-once functions" (PDF), in Crama, Yves; Hammer, Peter L. (eds.), Boolean functions, Encyclopedia of Mathematics and its Applications, vol. 142, Cambridge University Press, Cambridge, pp. 519–560, doi:10.1017/CBO9780511852008, ISBN 978-0-521-84751-3, MR 2742439 http://www.cs.haifa.ac.il/~golumbic/courses/algorithmic-graph-theory/slides_and_notes_of_lectures/Lecture%207%20-%20Cographs%20and%20their%20Applications/readonce-chapter-final.pdf
Golumbic & Gurvich (2011), p. 520. - Golumbic, Martin C.; Gurvich, Vladimir (2011), "Read-once functions" (PDF), in Crama, Yves; Hammer, Peter L. (eds.), Boolean functions, Encyclopedia of Mathematics and its Applications, vol. 142, Cambridge University Press, Cambridge, pp. 519–560, doi:10.1017/CBO9780511852008, ISBN 978-0-521-84751-3, MR 2742439 http://www.cs.haifa.ac.il/~golumbic/courses/algorithmic-graph-theory/slides_and_notes_of_lectures/Lecture%207%20-%20Cographs%20and%20their%20Applications/readonce-chapter-final.pdf
Golumbic & Gurvich (2011), Theorem 10.1, p. 521; Golumbic, Mintz & Rotics (2006). - Golumbic, Martin C.; Gurvich, Vladimir (2011), "Read-once functions" (PDF), in Crama, Yves; Hammer, Peter L. (eds.), Boolean functions, Encyclopedia of Mathematics and its Applications, vol. 142, Cambridge University Press, Cambridge, pp. 519–560, doi:10.1017/CBO9780511852008, ISBN 978-0-521-84751-3, MR 2742439 http://www.cs.haifa.ac.il/~golumbic/courses/algorithmic-graph-theory/slides_and_notes_of_lectures/Lecture%207%20-%20Cographs%20and%20their%20Applications/readonce-chapter-final.pdf
Golumbic & Gurvich (2011), Examples f2 and f3, p. 521. - Golumbic, Martin C.; Gurvich, Vladimir (2011), "Read-once functions" (PDF), in Crama, Yves; Hammer, Peter L. (eds.), Boolean functions, Encyclopedia of Mathematics and its Applications, vol. 142, Cambridge University Press, Cambridge, pp. 519–560, doi:10.1017/CBO9780511852008, ISBN 978-0-521-84751-3, MR 2742439 http://www.cs.haifa.ac.il/~golumbic/courses/algorithmic-graph-theory/slides_and_notes_of_lectures/Lecture%207%20-%20Cographs%20and%20their%20Applications/readonce-chapter-final.pdf
Golumbic & Gurvich (2011), Lemma 10.1, p. 529. - Golumbic, Martin C.; Gurvich, Vladimir (2011), "Read-once functions" (PDF), in Crama, Yves; Hammer, Peter L. (eds.), Boolean functions, Encyclopedia of Mathematics and its Applications, vol. 142, Cambridge University Press, Cambridge, pp. 519–560, doi:10.1017/CBO9780511852008, ISBN 978-0-521-84751-3, MR 2742439 http://www.cs.haifa.ac.il/~golumbic/courses/algorithmic-graph-theory/slides_and_notes_of_lectures/Lecture%207%20-%20Cographs%20and%20their%20Applications/readonce-chapter-final.pdf
Golumbic & Gurvich (2011), Remark 10.4, pp. 540–541. - Golumbic, Martin C.; Gurvich, Vladimir (2011), "Read-once functions" (PDF), in Crama, Yves; Hammer, Peter L. (eds.), Boolean functions, Encyclopedia of Mathematics and its Applications, vol. 142, Cambridge University Press, Cambridge, pp. 519–560, doi:10.1017/CBO9780511852008, ISBN 978-0-521-84751-3, MR 2742439 http://www.cs.haifa.ac.il/~golumbic/courses/algorithmic-graph-theory/slides_and_notes_of_lectures/Lecture%207%20-%20Cographs%20and%20their%20Applications/readonce-chapter-final.pdf
Gurvič (1977); Mundici (1989); Karchmer et al. (1993). - Gurvič, V. A. (1977), "Repetition-free Boolean functions", Uspekhi Matematicheskikh Nauk, 32 (1(193)): 183–184, MR 0441560 https://mi.mathnet.ru/eng/umn3055
Golumbic & Gurvich (2011), Theorem 10.8, p. 541; Golumbic, Mintz & Rotics (2006); Golumbic, Mintz & Rotics (2008). - Golumbic, Martin C.; Gurvich, Vladimir (2011), "Read-once functions" (PDF), in Crama, Yves; Hammer, Peter L. (eds.), Boolean functions, Encyclopedia of Mathematics and its Applications, vol. 142, Cambridge University Press, Cambridge, pp. 519–560, doi:10.1017/CBO9780511852008, ISBN 978-0-521-84751-3, MR 2742439 http://www.cs.haifa.ac.il/~golumbic/courses/algorithmic-graph-theory/slides_and_notes_of_lectures/Lecture%207%20-%20Cographs%20and%20their%20Applications/readonce-chapter-final.pdf
Golumbic & Gurvich (2011), Theorem 10.9, p. 548; Angluin, Hellerstein & Karpinski (1993). - Golumbic, Martin C.; Gurvich, Vladimir (2011), "Read-once functions" (PDF), in Crama, Yves; Hammer, Peter L. (eds.), Boolean functions, Encyclopedia of Mathematics and its Applications, vol. 142, Cambridge University Press, Cambridge, pp. 519–560, doi:10.1017/CBO9780511852008, ISBN 978-0-521-84751-3, MR 2742439 http://www.cs.haifa.ac.il/~golumbic/courses/algorithmic-graph-theory/slides_and_notes_of_lectures/Lecture%207%20-%20Cographs%20and%20their%20Applications/readonce-chapter-final.pdf