Metal ions are essential to virtually all biological systems and hence studying their concentrations with effective probes is highly advantageous. Since metal ions are key to the causes of cancer, diabetes, and other diseases, monitoring them with probes that can provide insight into their concentrations with spatial and temporal resolution is of great interest to the scientific community. There are many applications that one can envision for small molecule sensors. It has been shown that one can use them to differentiate effectively between acceptable and harmful concentrations of mercury in fish. Further, since some types of neurons uptake zinc during their operation, these probes can be used as a way to track activity in the brain and could serve as an effective alternative to functional MRI. One can also track and quantify the growth of a cell, such as a fibroblast, that uptakes metal ions as it constructs itself. Numerous other biological processes can be tracked using small molecule sensors as many change metal concentrations as they occur, which can then be monitored. Still, the sensor must be tailored for its specific environment and sensing requirements. Depending on the application, the metal sensor should be selective for a certain type of metal, and especially needs to be able to bind its target metal with greater affinity than metals that naturally exist at high concentrations within the cell . Further, they should provide a response with a strong modulation in fluorescent spectrum and hence provide a high signal-to-noise ratio. Finally, it is essential that a sensor is not toxic to the biological system in which it is used.
Most detection mechanisms involved in small molecule sensors comprise some modulation in the fluorescent behavior of the sensing molecule upon binding the target metal. When a metal coordinates to such a sensor, it may either enhance or reduce the original fluorescent emission. The former is known as the Chelation Enhancement Fluorescence effect (CHEF), while the latter is called the Chelation Enhancement Quenching effect (CHEQ). By changing the intensity of emission at different wavelengths, the resulting fluorescent spectrum may attenuate, amplify, or shift upon the binding and dissociation of a metal. This shift in spectra can be monitored using a detector such as a microscope or a photodiode.
Listed below are some examples of mechanisms by which emission is modulated. Their participation in CHEQ or CHEF is dependent on the metal and small molecule sensor in question.
Tomat, Elisa; Lippard, Stephen J (April 2010). "Imaging mobile zinc in biology". Current Opinion in Chemical Biology. 14 (2): 225–230. doi:10.1016/j.cbpa.2009.12.010. PMC 2847655. PMID 20097117. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2847655
Formica, Mauro; Fusi, Vieri; Giorgi, Luca; Micheloni, Mauro (January 2012). "New fluorescent chemosensors for metal ions in solution". Coordination Chemistry Reviews. 256 (1–2): 170–192. doi:10.1016/j.ccr.2011.09.010. /wiki/Doi_(identifier)
Domaille, Dylan W; Que, Emily L; Chang, Christopher J (March 2008). "Synthetic fluorescent sensors for studying the cell biology of metals". Nature Chemical Biology. 4 (3): 168–175. doi:10.1038/nchembio.69. PMID 18277978. /wiki/Doi_(identifier)
Domaille, Dylan W; Que, Emily L; Chang, Christopher J (March 2008). "Synthetic fluorescent sensors for studying the cell biology of metals". Nature Chemical Biology. 4 (3): 168–175. doi:10.1038/nchembio.69. PMID 18277978. /wiki/Doi_(identifier)
Yoon, Sungho; Albers, Aaron E.; Wong, Audrey P.; Chang, Christopher J. (November 2005). "Screening Mercury Levels in Fish with a Selective Fluorescent Chemosensor". Journal of the American Chemical Society. 127 (46): 16030–16031. doi:10.1021/ja0557987. PMID 16287282. /wiki/Doi_(identifier)
Hirano, Tomoya; Kikuchi, Kazuya; Urano, Yasuteru; Higuchi, Tsunehiko; Nagano, Tetsuo (December 2000). "Highly Zinc-Selective Fluorescent Sensor Molecules Suitable for Biological Applications". Journal of the American Chemical Society. 122 (49): 12399–12400. doi:10.1021/ja002467f. /wiki/Doi_(identifier)
Domaille, Dylan W; Que, Emily L; Chang, Christopher J (March 2008). "Synthetic fluorescent sensors for studying the cell biology of metals". Nature Chemical Biology. 4 (3): 168–175. doi:10.1038/nchembio.69. PMID 18277978. /wiki/Doi_(identifier)
Domaille, Dylan W; Que, Emily L; Chang, Christopher J (March 2008). "Synthetic fluorescent sensors for studying the cell biology of metals". Nature Chemical Biology. 4 (3): 168–175. doi:10.1038/nchembio.69. PMID 18277978. /wiki/Doi_(identifier)
Formica, Mauro; Fusi, Vieri; Giorgi, Luca; Micheloni, Mauro (January 2012). "New fluorescent chemosensors for metal ions in solution". Coordination Chemistry Reviews. 256 (1–2): 170–192. doi:10.1016/j.ccr.2011.09.010. /wiki/Doi_(identifier)
Carter, Kyle P.; Young, Alexandra M.; Palmer, Amy E. (23 April 2014). "Fluorescent Sensors for Measuring Metal Ions in Living Systems". Chemical Reviews. 114 (8): 4564–4601. doi:10.1021/cr400546e. PMC 4096685. PMID 24588137. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4096685
Formica, Mauro; Fusi, Vieri; Giorgi, Luca; Micheloni, Mauro (January 2012). "New fluorescent chemosensors for metal ions in solution". Coordination Chemistry Reviews. 256 (1–2): 170–192. doi:10.1016/j.ccr.2011.09.010. /wiki/Doi_(identifier)
Formica, Mauro; Fusi, Vieri; Giorgi, Luca; Micheloni, Mauro (January 2012). "New fluorescent chemosensors for metal ions in solution". Coordination Chemistry Reviews. 256 (1–2): 170–192. doi:10.1016/j.ccr.2011.09.010. /wiki/Doi_(identifier)
Formica, Mauro; Fusi, Vieri; Giorgi, Luca; Micheloni, Mauro (January 2012). "New fluorescent chemosensors for metal ions in solution". Coordination Chemistry Reviews. 256 (1–2): 170–192. doi:10.1016/j.ccr.2011.09.010. /wiki/Doi_(identifier)
Formica, Mauro; Fusi, Vieri; Giorgi, Luca; Micheloni, Mauro (January 2012). "New fluorescent chemosensors for metal ions in solution". Coordination Chemistry Reviews. 256 (1–2): 170–192. doi:10.1016/j.ccr.2011.09.010. /wiki/Doi_(identifier)
Formica, Mauro; Fusi, Vieri; Giorgi, Luca; Micheloni, Mauro (January 2012). "New fluorescent chemosensors for metal ions in solution". Coordination Chemistry Reviews. 256 (1–2): 170–192. doi:10.1016/j.ccr.2011.09.010. /wiki/Doi_(identifier)
"Fluorescence Resonance Energy Transfer". UC Davis Chemwiki. UC Davis. 2 October 2013. Retrieved 12 March 2015. http://chemwiki.ucdavis.edu/Theoretical_Chemistry/Fundamentals/Fluorescence_Resonance_Energy_Transfer
Formica, Mauro; Fusi, Vieri; Giorgi, Luca; Micheloni, Mauro (January 2012). "New fluorescent chemosensors for metal ions in solution". Coordination Chemistry Reviews. 256 (1–2): 170–192. doi:10.1016/j.ccr.2011.09.010. /wiki/Doi_(identifier)
Formica, Mauro; Fusi, Vieri; Giorgi, Luca; Micheloni, Mauro (January 2012). "New fluorescent chemosensors for metal ions in solution". Coordination Chemistry Reviews. 256 (1–2): 170–192. doi:10.1016/j.ccr.2011.09.010. /wiki/Doi_(identifier)
Formica, Mauro; Fusi, Vieri; Giorgi, Luca; Micheloni, Mauro (January 2012). "New fluorescent chemosensors for metal ions in solution". Coordination Chemistry Reviews. 256 (1–2): 170–192. doi:10.1016/j.ccr.2011.09.010. /wiki/Doi_(identifier)
Formica, Mauro; Fusi, Vieri; Giorgi, Luca; Micheloni, Mauro (January 2012). "New fluorescent chemosensors for metal ions in solution". Coordination Chemistry Reviews. 256 (1–2): 170–192. doi:10.1016/j.ccr.2011.09.010. /wiki/Doi_(identifier)
Xue, Guoping; Bradshaw, Jerald S; Dalley, N.Kent; Savage, Paul B; Izatt, Reed M; Prodi, Luca; Montalti, Marco; Zaccheroni, Nelsi (June 2002). "The synthesis of azacrown ethers with quinoline-based sidearms as potential zinc(II) fluorophores". Tetrahedron. 58 (24): 4809–4815. doi:10.1016/S0040-4020(02)00451-9. /wiki/Doi_(identifier)
Miyamoto, Ryo; Kawakami, Jun; Takahashi, Shuko; Ito, Shunji; Nagaki, Masahiko; Kitahra, Haruo (2006). "Time-Dependent DFT Study of Emission Mechanism of 8-Hydroxyquinoline Derivatives as Fluorescent Chemosensors for Metal Ions". Journal of Computer Chemistry, Japan. 5 (1): 19–22. doi:10.2477/jccj.5.19. https://doi.org/10.2477%2Fjccj.5.19
Fabbrizzi, Luigi; Licchelli, Maurizio; Pallavicini, Piersandro; Perotti, Angelo; Sacchi, Donatella (17 October 1994). "An Anthracene-Based Fluorescent Sensor for Transition Metal Ions". Angewandte Chemie International Edition in English. 33 (19): 1975–1977. doi:10.1002/anie.199419751. /wiki/Doi_(identifier)
Carter, Kyle P.; Young, Alexandra M.; Palmer, Amy E. (23 April 2014). "Fluorescent Sensors for Measuring Metal Ions in Living Systems". Chemical Reviews. 114 (8): 4564–4601. doi:10.1021/cr400546e. PMC 4096685. PMID 24588137. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4096685
Pan, Enhui; Zhang, Xiao-an; Huang, Zhen; Krezel, Artur; Zhao, Min; Tinberg, Christine E.; Lippard, Stephen J.; McNamara, James O. (September 2011). "Vesicular Zinc Promotes Presynaptic and Inhibits Postsynaptic Long-Term Potentiation of Mossy Fiber-CA3 Synapse". Neuron. 71 (6): 1116–1126. doi:10.1016/j.neuron.2011.07.019. PMC 3184234. PMID 21943607. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3184234
Domaille, Dylan W; Que, Emily L; Chang, Christopher J (March 2008). "Synthetic fluorescent sensors for studying the cell biology of metals". Nature Chemical Biology. 4 (3): 168–175. doi:10.1038/nchembio.69. PMID 18277978. /wiki/Doi_(identifier)
Domaille, Dylan W; Que, Emily L; Chang, Christopher J (March 2008). "Synthetic fluorescent sensors for studying the cell biology of metals". Nature Chemical Biology. 4 (3): 168–175. doi:10.1038/nchembio.69. PMID 18277978. /wiki/Doi_(identifier)
Hirano, Tomoya; Kikuchi, Kazuya; Urano, Yasuteru; Higuchi, Tsunehiko; Nagano, Tetsuo (December 2000). "Highly Zinc-Selective Fluorescent Sensor Molecules Suitable for Biological Applications". Journal of the American Chemical Society. 122 (49): 12399–12400. doi:10.1021/ja002467f. /wiki/Doi_(identifier)
Domaille, Dylan W; Que, Emily L; Chang, Christopher J (March 2008). "Synthetic fluorescent sensors for studying the cell biology of metals". Nature Chemical Biology. 4 (3): 168–175. doi:10.1038/nchembio.69. PMID 18277978. /wiki/Doi_(identifier)
Carter, Kyle P.; Young, Alexandra M.; Palmer, Amy E. (23 April 2014). "Fluorescent Sensors for Measuring Metal Ions in Living Systems". Chemical Reviews. 114 (8): 4564–4601. doi:10.1021/cr400546e. PMC 4096685. PMID 24588137. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4096685
Domaille, Dylan W; Que, Emily L; Chang, Christopher J (March 2008). "Synthetic fluorescent sensors for studying the cell biology of metals". Nature Chemical Biology. 4 (3): 168–175. doi:10.1038/nchembio.69. PMID 18277978. /wiki/Doi_(identifier)
Carter, Kyle P.; Young, Alexandra M.; Palmer, Amy E. (23 April 2014). "Fluorescent Sensors for Measuring Metal Ions in Living Systems". Chemical Reviews. 114 (8): 4564–4601. doi:10.1021/cr400546e. PMC 4096685. PMID 24588137. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4096685
Carter, Kyle P.; Young, Alexandra M.; Palmer, Amy E. (23 April 2014). "Fluorescent Sensors for Measuring Metal Ions in Living Systems". Chemical Reviews. 114 (8): 4564–4601. doi:10.1021/cr400546e. PMC 4096685. PMID 24588137. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4096685
Chen, Jin-Long; Zhuo, Shu-Juan; Wu, Yu-Qing; Fang, Fang; Li, Ling; Zhu, Chang-Qing (February 2006). "High selective determination iron(II) by its enhancement effect on the fluorescence of pyrene-tetramethylpiperidinyl (TEMPO) as a spin fluorescence probe". Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 63 (2): 438–443. Bibcode:2006AcSpA..63..438C. doi:10.1016/j.saa.2005.04.057. PMID 15996513. /wiki/Bibcode_(identifier)
Carter, Kyle P.; Young, Alexandra M.; Palmer, Amy E. (23 April 2014). "Fluorescent Sensors for Measuring Metal Ions in Living Systems". Chemical Reviews. 114 (8): 4564–4601. doi:10.1021/cr400546e. PMC 4096685. PMID 24588137. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4096685
Au-Yeung, Ho Yu; New, Elizabeth J.; Chang, Christopher J. (2012). "A selective reaction-based fluorescent probe for detecting cobalt in living cells". Chemical Communications. 48 (43): 5268–70. doi:10.1039/c2cc31681a. PMID 22531796. /wiki/Doi_(identifier)
Domaille, Dylan W; Que, Emily L; Chang, Christopher J (March 2008). "Synthetic fluorescent sensors for studying the cell biology of metals". Nature Chemical Biology. 4 (3): 168–175. doi:10.1038/nchembio.69. PMID 18277978. /wiki/Doi_(identifier)
Domaille, Dylan W; Que, Emily L; Chang, Christopher J (March 2008). "Synthetic fluorescent sensors for studying the cell biology of metals". Nature Chemical Biology. 4 (3): 168–175. doi:10.1038/nchembio.69. PMID 18277978. /wiki/Doi_(identifier)
Guo, Xiangfeng; Qian, Xuhong; Jia, Lihua (March 2004). "A Highly Selective and Sensitive Fluorescent Chemosensor for Hg in Neutral Buffer Aqueous Solution". Journal of the American Chemical Society. 126 (8): 2272–2273. doi:10.1021/ja037604y. PMID 14982408. /wiki/Doi_(identifier)
Domaille, Dylan W; Que, Emily L; Chang, Christopher J (March 2008). "Synthetic fluorescent sensors for studying the cell biology of metals". Nature Chemical Biology. 4 (3): 168–175. doi:10.1038/nchembio.69. PMID 18277978. /wiki/Doi_(identifier)
Yoon, Sungho; Albers, Aaron E.; Wong, Audrey P.; Chang, Christopher J. (November 2005). "Screening Mercury Levels in Fish with a Selective Fluorescent Chemosensor". Journal of the American Chemical Society. 127 (46): 16030–16031. doi:10.1021/ja0557987. PMID 16287282. /wiki/Doi_(identifier)