Electrocatalysts can be evaluated according to activity, stability, and selectivity. The activity of electrocatalysts can be assessed quantitatively by the current density is generated, and therefore how fast a reaction is taking place, for a given applied potential. This relationship is described with the Tafel equation. In assessing the stability of electrocatalysts, the a key parameter is turnover number (TON). The selectivity of electrocatalysts refers to the product distribution. Selectivity can be quantitatively assessed through a selectivity coefficient, which compares the response of the material to the desired analyte or substrate with the response to other interferents.
A homogeneous electrocatalyst is one that is present in the same phase of matter as the reactants, for example, a water-soluble coordination complex catalyzing an electrochemical conversion in solution. This technology is not practiced commercially, but is of research interest.
There is much interest in replacing traditional chemical catalysis with electrocatalysis. In such a scheme electrons supplied by an electrode are reagents. The topic is a theme within the area of green energy, because the electrons can be sourced from renewable resources. Several conversions that use of hydrogen gas could be transformed into electrochemical processes that use protons. This technology remains economically noncompetitive.
The ammonia represents an energy source since it is combustable. In this way electrification can be seen as a means for energy storage.
A heterogeneous electrocatalyst is one that is present in a different phase of matter from the reactants, for example, a solid surface catalyzing a reaction in solution. Different types of heterogeneous electrocatalyst materials are shown above in green. Since heterogeneous electrocatalytic reactions need an electron transfer between the solid catalyst (typically a metal) and the electrolyte, which can be a liquid solution but also a polymer or a ceramic capable of ionic conduction, the reaction kinetics depend on both the catalyst and the electrolyte as well as on the interface between them. The nature of the electrocatalyst surface determines some properties of the reaction including rate and selectivity.
Electrocatalysis can occur at the surface of some bulk materials, such as platinum metal. Bulk metal surfaces of gold have been employed for the decomposition methanol for hydrogen production. Water electrolysis is conventionally conducted at inert bulk metal electrodes such as platinum or iridium. The activity of an electrocatalyst can be tuned with a chemical modification, commonly obtained by alloying two or more metals. This is due to a change in the electronic structure, especially in the d band which is considered to be responsible for the catalytic properties of noble metals.
Also, higher reaction rates can be achieved by precisely controlling the arrangement of surface atoms: indeed, in nanometric systems, the number of available reaction sites is a better parameter than the exposed surface area in order to estimate electrocatalytic activity. Sites are the positions where the reaction could take place; the likelihood of a reaction to occur in a certain site depends on the electronic structure of the catalyst, which determines the adsorption energy of the reactants together with many other variables not yet fully clarified.
To date, a generalized surface dependence mechanism cannot be formulated since every surface effect is strongly reaction-specific. A few classifications of reactions based on their surface dependence have been proposed but there are still many exceptions that do not fall into them.
The interest in reducing as much as possible the costs of the catalyst for electrochemical processes led to the use of fine catalyst powders since the specific surface area increases as the average particle size decreases. For instance, most common PEM fuel cells and electrolyzers design is based on a polymeric membrane charged in platinum nanoparticles as an electrocatalyst (the so-called platinum black).
However, many MOFs are known unstable in chemical and electrochemical conditions, making it difficult to tell if MOFs are actually catalysts or precatalysts. The real active sites of MOFs during electrocatalysis need to be analyzed comprehensively.
Hydrogen and oxygen can be combined through by the use of a fuel cell. In this process, the reaction is broken into two half reactions which occur at separate electrodes. In this situation the reactant's energy is directly converted to electricity. Useful energy can be obtained from the thermal heat of this reaction through an internal combustion engine with an upper efficiency of 60% (for compression ratio of 10 and specific heat ratio of 1.4) based on the Otto thermodynamic cycle. It is also possible to combine the hydrogen and oxygen through redox mechanism as in the case of a fuel cell. In this process, the reaction is broken into two half-reactions which occur at separate electrodes. In this situation the reactant's energy is directly converted to electricity.
The standard reduction potential of hydrogen is defined as 0V, and frequently referred to as the standard hydrogen electrode (SHE).
HER can be promoted by many catalysts.
Electrocatalysis for CO2 reduction is not practiced commercially but remains a topic of research. The reduction of CO2 into useable products is a potential way to combat climate change. Electrocatalysts can promote the reduction of carbon dioxide into methanol and other useful fuel and stock chemicals. The most valuable reduction products of CO2 are those that have a higher energy content, meaning that they can be reused as fuels. Thus, catalyst development focuses on the production of products such as methane and methanol. Homogeneous catalysts, such as enzymes and synthetic coordination complexes have been employed for this purpose. A variety of nanomaterials have also been studied for CO2 reduction, including carbon-based materials and framework materials.
Aqueous solutions of methanol can decompose into CO2 hydrogen gas, and water. Although this process is thermodynamically favored, the activation barrier is extremely high, so in practice this reaction is not typically observed. However, electrocatalysts can speed up this reaction greatly, making methanol a possible route to hydrogen storage for fuel cells. Electrocatalysts such as gold, platinum, and various carbon-based materials have been shown to effectively catalyze this process. An electrocatalyst of platinum and rhodium on carbon backed tin-dioxide nanoparticles can break carbon bonds at room temperature with only carbon dioxide as a by-product, so that ethanol can be oxidized into the necessary hydrogen ions and electrons required to create electricity.
Electrocatalysts are used to promote certain chemical reactions to obtain synthetic products. Graphene and graphene oxides have shown promise as electrocatalytic materials for synthesis. Electrocatalytic methods also have potential for polymer synthesis. Electrocatalytic synthesis reactions can be performed under a constant current, constant potential, or constant cell-voltage conditions, depending on the scale and purpose of the reaction.
Water treatment systems often require the degradation of hazardous compounds. These treatment processes are dubbed Advanced oxidation processes, and are key in destroying byproducts from disinfection, pesticides, and other hazardous compound. There is an emerging effort to enable these processes to destroy more tenacious compounds, especially PFAS
Kotrel, Stefan; BrUninger, Sigmar (2008). "Industrial Electrocatalysis". Handbook of Heterogeneous Catalysis. doi:10.1002/9783527610044.hetcat0103. ISBN 978-3527312412. 978-3527312412
Roduner, Emil (June 13, 2017). "Selected fundamentals of catalysis and electrocatalysis in energy conversion reactions—A tutorial". Catalysis Today. 309: 263–268. doi:10.1016/j.cattod.2017.05.091. hdl:2263/68699. S2CID 103395714. https://linkinghub.elsevier.com/retrieve/pii/S0920586117304236
Debe, Mark K. (2012). "Electrocatalyst approaches and challenges for automotive fuel cells". Nature. 486 (7401): 43–51. Bibcode:2012Natur.486...43D. doi:10.1038/nature11115. PMID 22678278. S2CID 4349039. /wiki/Bibcode_(identifier)
Jiao, Yan; Zheng, Yao; Jaroniec, Mietek; Qiao, Shi Zhang (2015). "Design of electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions". Chemical Society Reviews. 44 (8): 2060–2086. doi:10.1039/C4CS00470A. PMID 25672249. /wiki/Doi_(identifier)
Jaramillo, Tom (September 3, 2014). "Electrocatalysis 101 | GCEP Symposium - October 11, 2012". Youtube.com. https://www.youtube.com/watch?v=2sbsTLvcbCg&feature=youtu.be
Bard, Allen J.; Larry R. Faulkner (2001). Electrochemical methods: fundamentals and applications (Second ed.). Hoboken, NJ. ISBN 0-471-04372-9. OCLC 43859504.{{cite book}}: CS1 maint: location missing publisher (link) 0-471-04372-9
McCreery, Richard L. (July 2008). "Advanced Carbon Electrode Materials for Molecular Electrochemistry". Chemical Reviews. 108 (7): 2646–2687. doi:10.1021/cr068076m. ISSN 0009-2665. PMID 18557655. /wiki/Doi_(identifier)
McCreery, Richard L. (July 2008). "Advanced Carbon Electrode Materials for Molecular Electrochemistry". Chemical Reviews. 108 (7): 2646–2687. doi:10.1021/cr068076m. ISSN 0009-2665. PMID 18557655. /wiki/Doi_(identifier)
Jaramillo, Tom (September 3, 2014). "Electrocatalysis 101 | GCEP Symposium - October 11, 2012". Youtube.com. https://www.youtube.com/watch?v=2sbsTLvcbCg&feature=youtu.be
Jaramillo, Tom (September 3, 2014). "Electrocatalysis 101 | GCEP Symposium - October 11, 2012". Youtube.com. https://www.youtube.com/watch?v=2sbsTLvcbCg&feature=youtu.be
Brown, Micah D.; Schoenfisch, Mark H. (2019-11-27). "Electrochemical Nitric Oxide Sensors: Principles of Design and Characterization". Chemical Reviews. 119 (22): 11551–11575. doi:10.1021/acs.chemrev.8b00797. ISSN 0009-2665. PMID 31553169. S2CID 202761809. /wiki/Doi_(identifier)
Jaramillo, Tom (September 3, 2014). "Electrocatalysis 101 | GCEP Symposium - October 11, 2012". Youtube.com. https://www.youtube.com/watch?v=2sbsTLvcbCg&feature=youtu.be
Roduner, Emil (June 13, 2017). "Selected fundamentals of catalysis and electrocatalysis in energy conversion reactions—A tutorial". Catalysis Today. 309: 263–268. doi:10.1016/j.cattod.2017.05.091. hdl:2263/68699. S2CID 103395714. https://linkinghub.elsevier.com/retrieve/pii/S0920586117304236
Bard, Allen J.; Faulkner, Larry R. (January 2001). Electrochemical methods: fundamentals and applications. New York: Wiley. ISBN 978-0-471-04372-0. Retrieved 27 February 2009. 978-0-471-04372-0
Artero, Vincent; Chavarot-Kerlidou, Murielle; Fontecave, Marc (2011-08-01). "Splitting Water with Cobalt". Angewandte Chemie International Edition. 50 (32): 7238–7266. doi:10.1002/anie.201007987. PMID 21748828. http://doi.wiley.com/10.1002/anie.201007987
Kinzel, Niklas W.; Werlé, Christophe; Leitner, Walter (2021-01-19). "Transition Metal Complexes as Catalysts for the Electroconversion of CO 2 : An Organometallic Perspective". Angewandte Chemie International Edition. 60 (21): 11628–11686. doi:10.1002/anie.202006988. ISSN 1433-7851. PMC 8248444. PMID 33464678. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8248444
Wiedner, Eric S.; Appel, Aaron M.; Raugei, Simone; Shaw, Wendy J.; Bullock, R. Morris (2022). "Molecular Catalysts with Diphosphine Ligands Containing Pendant Amines". Chemical Reviews. 122 (14): 12427–12474. doi:10.1021/acs.chemrev.1c01001. OSTI 1922077. PMID 35640056. /wiki/Doi_(identifier)
Kleinhaus, Julian T.; Wolf, Jonas; Pellumbi, Kevinjeorjios; Wickert, Leon; Viswanathan, Sangita C.; Junge Puring, Kai; Siegmund, Daniel; Apfel, Ulf-Peter (2023). "Developing electrochemical hydrogenation towards industrial application". Chemical Society Reviews. 52 (21): 7305–7332. doi:10.1039/D3CS00419H. PMID 37814786. /wiki/Doi_(identifier)
"Dream or Reality? Electrification of the Chemical Process Industries". www.aiche-cep.com. Retrieved 2021-08-22. https://www.aiche-cep.com/cepmagazine/march_2021/MobilePagedArticle.action?articleId=1663852
Guo, Wenhan; Zhang, Kexin; Liang, Zibin; Zou, Ruqiang; Xu, Qiang (2019). "Electrochemical nitrogen fixation and utilization: Theories, advanced catalyst materials and system design". Chemical Society Reviews. 48 (24): 5658–5716. doi:10.1039/C9CS00159J. PMID 31742279. /wiki/Doi_(identifier)
Wang, Bo; Zhang, Yifeng; Minteer, Shelley D. (2023). "Renewable electron-driven bioinorganic nitrogen fixation: A superior route toward green ammonia?" (PDF). Energy & Environmental Science. 16 (2): 404–420. doi:10.1039/D2EE03132A. https://backend.orbit.dtu.dk/ws/files/298164093/D2EE03132A.pdf
Kinzel, Niklas W.; Werlé, Christophe; Leitner, Walter (2021-01-19). "Transition Metal Complexes as Catalysts for the Electroconversion of CO 2 : An Organometallic Perspective". Angewandte Chemie International Edition. 60 (21): 11628–11686. doi:10.1002/anie.202006988. ISSN 1433-7851. PMC 8248444. PMID 33464678. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8248444
Chen, Hui; Simoska, Olja; Lim, Koun; Grattieri, Matteo; Yuan, Mengwei; Dong, Fangyuan; Lee, Yoo Seok; Beaver, Kevin; Weliwatte, Samali; Gaffney, Erin M.; Minteer, Shelley D. (2020-12-09). "Fundamentals, Applications, and Future Directions of Bioelectrocatalysis". Chemical Reviews. 120 (23): 12903–12993. doi:10.1021/acs.chemrev.0c00472. ISSN 0009-2665. PMID 33050699. https://doi.org/10.1021%2Facs.chemrev.0c00472
Milton, Ross D.; Minteer, Shelley D. (2019-12-17). "Nitrogenase Bioelectrochemistry for Synthesis Applications". Accounts of Chemical Research. 52 (12): 3351–3360. doi:10.1021/acs.accounts.9b00494. ISSN 0001-4842. PMID 31800207. S2CID 208643374. https://pubs.acs.org/doi/abs/10.1021/acs.accounts.9b00494
Chen, Hui; Simoska, Olja; Lim, Koun; Grattieri, Matteo; Yuan, Mengwei; Dong, Fangyuan; Lee, Yoo Seok; Beaver, Kevin; Weliwatte, Samali; Gaffney, Erin M.; Minteer, Shelley D. (2020-12-09). "Fundamentals, Applications, and Future Directions of Bioelectrocatalysis". Chemical Reviews. 120 (23): 12903–12993. doi:10.1021/acs.chemrev.0c00472. ISSN 0009-2665. PMID 33050699. https://doi.org/10.1021%2Facs.chemrev.0c00472
Yang, Jenny Y.; Kerr, Tyler A.; Wang, Xinran S.; Barlow, Jeffrey M. (2020-11-18). "Reducing CO 2 to HCO 2 – at Mild Potentials: Lessons from Formate Dehydrogenase". Journal of the American Chemical Society. 142 (46): 19438–19445. Bibcode:2020JAChS.14219438Y. doi:10.1021/jacs.0c07965. ISSN 0002-7863. PMID 33141560. https://pubs.acs.org/doi/10.1021/jacs.0c07965
Chen, Hui; Simoska, Olja; Lim, Koun; Grattieri, Matteo; Yuan, Mengwei; Dong, Fangyuan; Lee, Yoo Seok; Beaver, Kevin; Weliwatte, Samali; Gaffney, Erin M.; Minteer, Shelley D. (2020-12-09). "Fundamentals, Applications, and Future Directions of Bioelectrocatalysis". Chemical Reviews. 120 (23): 12903–12993. doi:10.1021/acs.chemrev.0c00472. ISSN 0009-2665. PMID 33050699. https://doi.org/10.1021%2Facs.chemrev.0c00472
Qiao, Yan; Bao, Shu-Juan; Li, Chang Ming (2010). "Electrocatalysis in microbial fuel cells—from electrode material to direct electrochemistry". Energy & Environmental Science. 3 (5): 544. doi:10.1039/b923503e. ISSN 1754-5692. http://xlink.rsc.org/?DOI=b923503e
Chen, Hui; Simoska, Olja; Lim, Koun; Grattieri, Matteo; Yuan, Mengwei; Dong, Fangyuan; Lee, Yoo Seok; Beaver, Kevin; Weliwatte, Samali; Gaffney, Erin M.; Minteer, Shelley D. (2020-12-09). "Fundamentals, Applications, and Future Directions of Bioelectrocatalysis". Chemical Reviews. 120 (23): 12903–12993. doi:10.1021/acs.chemrev.0c00472. ISSN 0009-2665. PMID 33050699. https://doi.org/10.1021%2Facs.chemrev.0c00472
Qiao, Yan; Bao, Shu-Juan; Li, Chang Ming (2010). "Electrocatalysis in microbial fuel cells—from electrode material to direct electrochemistry". Energy & Environmental Science. 3 (5): 544. doi:10.1039/b923503e. ISSN 1754-5692. http://xlink.rsc.org/?DOI=b923503e
Chen, Hui; Simoska, Olja; Lim, Koun; Grattieri, Matteo; Yuan, Mengwei; Dong, Fangyuan; Lee, Yoo Seok; Beaver, Kevin; Weliwatte, Samali; Gaffney, Erin M.; Minteer, Shelley D. (2020-12-09). "Fundamentals, Applications, and Future Directions of Bioelectrocatalysis". Chemical Reviews. 120 (23): 12903–12993. doi:10.1021/acs.chemrev.0c00472. ISSN 0009-2665. PMID 33050699. https://doi.org/10.1021%2Facs.chemrev.0c00472
McCreery, Richard L. (July 2008). "Advanced Carbon Electrode Materials for Molecular Electrochemistry". Chemical Reviews. 108 (7): 2646–2687. doi:10.1021/cr068076m. ISSN 0009-2665. PMID 18557655. /wiki/Doi_(identifier)
McCreery, Richard L. (July 2008). "Advanced Carbon Electrode Materials for Molecular Electrochemistry". Chemical Reviews. 108 (7): 2646–2687. doi:10.1021/cr068076m. ISSN 0009-2665. PMID 18557655. /wiki/Doi_(identifier)
Roduner, Emil (June 13, 2017). "Selected fundamentals of catalysis and electrocatalysis in energy conversion reactions—A tutorial". Catalysis Today. 309: 263–268. doi:10.1016/j.cattod.2017.05.091. hdl:2263/68699. S2CID 103395714. https://linkinghub.elsevier.com/retrieve/pii/S0920586117304236
Carmo, Marcelo; Fritz, David L.; Mergel, Jürgen; Stolten, Detlef (March 14, 2013). "A comprehensive review on PEM water electrolysis". International Journal of Hydrogen Energy. 38 (12): 4901–4934. Bibcode:2013IJHE...38.4901C. doi:10.1016/j.ijhydene.2013.01.151. https://linkinghub.elsevier.com/retrieve/pii/S0360319913002607
Mistry, H.; Varela, A.S.; Strasser, P.; Cuenya, B.R. (2016). "Nanostructured electrocatalysts with tunable activity and selectivity". Nature Reviews Materials. 1 (4): 1–14. Bibcode:2016NatRM...116009M. doi:10.1038/natrevmats.2016.9. /wiki/Peter_Strasser_(chemist)
Kleijn, Steven E. F.; Lai, Stanley C. S.; Koper, Marc T. M.; Unwin, Patrick R. (2014-04-01). "Electrochemistry of Nanoparticles". Angewandte Chemie International Edition. 53 (14): 3558–3586. doi:10.1002/anie.201306828. PMID 24574053. http://doi.wiley.com/10.1002/anie.201306828
Luo, Mingchuan; Guo, Shaojun (September 26, 2017). "Strain-controlled electrocatalysis on multimetallic nanomaterials". Nature Reviews Materials. 2 (11): 17059. Bibcode:2017NatRM...217059L. doi:10.1038/natrevmats.2017.59. ISSN 2058-8437. http://www.nature.com/articles/natrevmats201759
Koper, M.T.M. (2011). "Structure sensitivity and nanoscale effects in electrocatalysis". Nanoscale. 3 (5). The Royal Society of Chemistry: 2054–2073. Bibcode:2011Nanos...3.2054K. doi:10.1039/c0nr00857e. PMID 21399781. /wiki/Bibcode_(identifier)
Kleijn, Steven E. F.; Lai, Stanley C. S.; Koper, Marc T. M.; Unwin, Patrick R. (2014-04-01). "Electrochemistry of Nanoparticles". Angewandte Chemie International Edition. 53 (14): 3558–3586. doi:10.1002/anie.201306828. PMID 24574053. http://doi.wiley.com/10.1002/anie.201306828
Koper, M.T.M. (2011). "Structure sensitivity and nanoscale effects in electrocatalysis". Nanoscale. 3 (5). The Royal Society of Chemistry: 2054–2073. Bibcode:2011Nanos...3.2054K. doi:10.1039/c0nr00857e. PMID 21399781. /wiki/Bibcode_(identifier)
Carmo, M.; Fritz, D.L.; Mergel, J.; Stolten, D. (2013). "A comprehensive review on PEM water electrolysis". International Journal of Hydrogen Energy. 38 (12): 4901–4934. Bibcode:2013IJHE...38.4901C. doi:10.1016/j.ijhydene.2013.01.151. /wiki/Bibcode_(identifier)
Koper, M.T.M. (2011). "Structure sensitivity and nanoscale effects in electrocatalysis". Nanoscale. 3 (5). The Royal Society of Chemistry: 2054–2073. Bibcode:2011Nanos...3.2054K. doi:10.1039/c0nr00857e. PMID 21399781. /wiki/Bibcode_(identifier)
Wang, Xin (19 January 2008). "CNTs tuned to provide electrocatalyst support". Nanotechweb.org. Archived from the original on 22 January 2009. Retrieved 27 February 2009. https://web.archive.org/web/20090122040434/http://nanotechweb.org/cws/article/tech/37366
McCreery, Richard L. (June 17, 2008). "Advanced Carbon Electrode Materials for Molecular Electrochemistry". Chemical Reviews. 108 (7): 2646–2687. doi:10.1021/cr068076m. ISSN 0009-2665. PMID 18557655. https://pubs.acs.org/doi/10.1021/cr068076m
McCreery, Richard L. (June 17, 2008). "Advanced Carbon Electrode Materials for Molecular Electrochemistry". Chemical Reviews. 108 (7): 2646–2687. doi:10.1021/cr068076m. ISSN 0009-2665. PMID 18557655. https://pubs.acs.org/doi/10.1021/cr068076m
Wildgoose, Gregory G.; Banks, Craig E.; Leventis, Henry C.; Compton, Richard G. (November 30, 2005). "Chemically Modified Carbon Nanotubes for Use in Electroanalysis". Microchimica Acta. 152 (3–4): 187–214. doi:10.1007/s00604-005-0449-x. ISSN 0026-3672. S2CID 93373402. http://link.springer.com/10.1007/s00604-005-0449-x
Zhang, Qin; Zhang, Xiaoxiang; Wang, Junzhong; Wang, Congwei (2021-01-15). "Graphene-supported single-atom catalysts and applications in electrocatalysis". Nanotechnology. 32 (3): 032001. Bibcode:2021Nanot..32c2001Z. doi:10.1088/1361-6528/abbd70. ISSN 0957-4484. PMID 33002887. S2CID 222146032. https://iopscience.iop.org/article/10.1088/1361-6528/abbd70
Dai, Liming (June 13, 2017). "Carbon-based catalysts for metal-free electrocatalysis". Current Opinion in Electrochemistry. 4 (1): 18–25. doi:10.1016/j.coelec.2017.06.004. https://doi.org/10.1016%2Fj.coelec.2017.06.004
Jiao, Long; Wang, Yang; Jiang, Hai-Long; Xu, Qiang (November 27, 2017). "Metal-Organic Frameworks as Platforms for Catalytic Applications". Advanced Materials. 30 (37): 1703663. doi:10.1002/adma.201703663. PMID 29178384. S2CID 205282723. http://doi.wiley.com/10.1002/adma.201703663
Jiao, Long; Wang, Yang; Jiang, Hai-Long; Xu, Qiang (November 27, 2017). "Metal-Organic Frameworks as Platforms for Catalytic Applications". Advanced Materials. 30 (37): 1703663. doi:10.1002/adma.201703663. PMID 29178384. S2CID 205282723. http://doi.wiley.com/10.1002/adma.201703663
Singh, Chanderpratap; Mukhopadhyay, Subhabrata; Hod, Idan (January 5, 2021). "Metal–organic framework derived nanomaterials for electrocatalysis: recent developments for CO2 and N2 reduction". Nano Convergence. 8 (1): 1. Bibcode:2021NanoC...8....1S. doi:10.1186/s40580-020-00251-6. ISSN 2196-5404. PMC 7785767. PMID 33403521. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7785767
Sharma, Rakesh Kumar; Yadav, Priya; Yadav, Manavi; Gupta, Radhika; Rana, Pooja; Srivastava, Anju; Zbořil, Radek; Varma, Rajender S.; Antonietti, Markus; Gawande, Manoj B. (2020). "Recent development of covalent organic frameworks (COFs): synthesis and catalytic (organic-electro-photo) applications". Materials Horizons. 7 (2): 411–454. doi:10.1039/C9MH00856J. ISSN 2051-6347. S2CID 204292382. http://xlink.rsc.org/?DOI=C9MH00856J
Zheng, Weiran; Liu, Mengjie; Lee, Lawrence Yoon Suk (3 January 2020). "Electrochemical Instability of Metal–Organic Frameworks: In Situ Spectroelectrochemical Investigation of the Real Active Sites". ACS Catalysis. 10 (1): 81–92. doi:10.1021/acscatal.9b03790. hdl:10397/100175. S2CID 212979103. /wiki/Doi_(identifier)
Kunze, Julia; Ulrich Stimming (2009). "Electrochemical Versus Heat-Engine Energy Technology: A Tribute to Wilhelm Ostwald's Visionary Statements". Angewandte Chemie International Edition. 48 (49): 9230–9237. doi:10.1002/anie.200903603. PMID 19894237. https://doi.org/10.1002%2Fanie.200903603
Haverkamp, Richard (3 June 2008). "What is an electrocatalyst?". Science learning New Zealand. Archived from the original (QuickTime video and transcript) on 29 April 2023. Retrieved 27 February 2009. https://web.archive.org/web/20230429203758/https://www.sciencelearn.org.nz/contexts/nanoscience/sci_media/video/what_is_an_electrocatalyst
Elgrishi, Noémie; Rountree, Kelley J.; McCarthy, Brian D.; Rountree, Eric S.; Eisenhart, Thomas T.; Dempsey, Jillian L. (2018-02-13). "A Practical Beginner's Guide to Cyclic Voltammetry". Journal of Chemical Education. 95 (2): 197–206. Bibcode:2018JChEd..95..197E. doi:10.1021/acs.jchemed.7b00361. ISSN 0021-9584. https://doi.org/10.1021%2Facs.jchemed.7b00361
Artero, Vincent; Chavarot-Kerlidou, Murielle; Fontecave, Marc (2011-08-01). "Splitting Water with Cobalt". Angewandte Chemie International Edition. 50 (32): 7238–7266. doi:10.1002/anie.201007987. PMID 21748828. http://doi.wiley.com/10.1002/anie.201007987
Artero, Vincent; Chavarot-Kerlidou, Murielle; Fontecave, Marc (2011-08-01). "Splitting Water with Cobalt". Angewandte Chemie International Edition. 50 (32): 7238–7266. doi:10.1002/anie.201007987. PMID 21748828. http://doi.wiley.com/10.1002/anie.201007987
Kinzel, Niklas W.; Werlé, Christophe; Leitner, Walter (2021-01-19). "Transition Metal Complexes as Catalysts for the Electroconversion of CO 2 : An Organometallic Perspective". Angewandte Chemie International Edition. 60 (21): 11628–11686. doi:10.1002/anie.202006988. ISSN 1433-7851. PMC 8248444. PMID 33464678. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8248444
Yang, Jenny Y.; Kerr, Tyler A.; Wang, Xinran S.; Barlow, Jeffrey M. (2020-11-18). "Reducing CO 2 to HCO 2 – at Mild Potentials: Lessons from Formate Dehydrogenase". Journal of the American Chemical Society. 142 (46): 19438–19445. Bibcode:2020JAChS.14219438Y. doi:10.1021/jacs.0c07965. ISSN 0002-7863. PMID 33141560. https://pubs.acs.org/doi/10.1021/jacs.0c07965
Kinzel, Niklas W.; Werlé, Christophe; Leitner, Walter (2021-01-19). "Transition Metal Complexes as Catalysts for the Electroconversion of CO 2 : An Organometallic Perspective". Angewandte Chemie International Edition. 60 (21): 11628–11686. doi:10.1002/anie.202006988. ISSN 1433-7851. PMC 8248444. PMID 33464678. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8248444
Pan, Fuping; Yang, Yang (2020). "Designing CO 2 reduction electrode materials by morphology and interface engineering". Energy & Environmental Science. 13 (8): 2275–2309. doi:10.1039/D0EE00900H. ISSN 1754-5692. S2CID 219737955. http://xlink.rsc.org/?DOI=D0EE00900H
Roduner, Emil (June 13, 2017). "Selected fundamentals of catalysis and electrocatalysis in energy conversion reactions—A tutorial". Catalysis Today. 309: 263–268. doi:10.1016/j.cattod.2017.05.091. hdl:2263/68699. S2CID 103395714. https://linkinghub.elsevier.com/retrieve/pii/S0920586117304236
Harris, Mark (26 January 2009). "Booze-powered cars coming soon". techradar.com. Archived from the original on 2 March 2009. Retrieved 27 February 2009. https://web.archive.org/web/20090302025300/http://www.techradar.com/news/world-of-tech/booze-powered-cars-coming-soon-513666
Sachdeva, Harshita (2020-09-30). "Recent advances in the catalytic applications of GO/rGO for green organic synthesis". Green Processing and Synthesis. 9 (1): 515–537. doi:10.1515/gps-2020-0055. ISSN 2191-9550. https://doi.org/10.1515%2Fgps-2020-0055
Siu, Juno C.; Fu, Niankai; Lin, Song (2020-03-17). "Catalyzing Electrosynthesis: A Homogeneous Electrocatalytic Approach to Reaction Discovery". Accounts of Chemical Research. 53 (3): 547–560. doi:10.1021/acs.accounts.9b00529. ISSN 0001-4842. PMC 7245362. PMID 32077681. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7245362
Holade, Yaovi; Servat, Karine; Tingry, Sophie; Napporn, Teko W.; Remita, Hynd; Cornu, David; Kokoh, K. Boniface (2017-10-06). "Advances in Electrocatalysis for Energy Conversion and Synthesis of Organic Molecules". ChemPhysChem. 18 (19): 2573–2605. doi:10.1002/cphc.201700447. ISSN 1439-4235. PMID 28732139. https://doi.org/10.1002%2Fcphc.201700447
Ji, Yangyuan; Choi, Youn Jeong; Fang, Yuhang; Pham, Hoang Son; Nou, Alliyan Tan; Lee, Linda S.; Niu, Junfeng; Warsinger, David M. (2023-01-19). "Electric Field-Assisted Nanofiltration for PFOA Removal with Exceptional Flux, Selectivity, and Destruction". Environmental Science & Technology. 57 (47). American Chemical Society (ACS): 18519–18528. Bibcode:2023EnST...5718519J. doi:10.1021/acs.est.2c04874. ISSN 0013-936X. PMID 36657468. S2CID 256030682. /wiki/Bibcode_(identifier)