Spatial ability is the capacity to understand, reason and remember the visual and spatial relations among objects or space. There are four common types of spatial abilities: spatial or visuo-spatial perception, spatial visualization, mental folding and mental rotation. Each of these abilities has unique properties and importance to many types of tasks whether in certain jobs or everyday life. For example, spatial perception is defined as the ability to perceive spatial relationships with respect to the orientation of one's body despite distracting information. Mental rotation on the other hand is the mental ability to manipulate and rotate 2D or 3D objects in space quickly and accurately. Lastly, spatial visualization is characterized as complicated multi-step manipulations of spatially presented information. These three abilities are mediated and supported by a fourth spatial cognitive factor known as spatial working memory. Spatial working memory is the ability to temporarily store a certain amount of visual-spatial memories under attentional control in order to complete a task. This cognitive ability mediates individual differences in the capacity for higher level spatial abilities such as mental rotation.
Spatial perception is defined as the ability to perceive spatial relationships in respect to the orientation of one's body despite distracting information. It consists of being able to perceive and visually understand outside spatial information such as features, properties, measurement, shapes, position and motion. For example, when one is navigating through a dense forest they are using spatial perception and awareness. Another example is when trying to understand the relations and mechanics inside of a car, they are relying on their spatial perception to understand its visual framework. Tests that measure spatial perception include the rod and frame test, where subjects must place a rod vertically while viewing a frame orientation of 22 degrees in angle, or the water-level task, where subjects have to draw or identify a horizontal line in a tilted bottle.
Spatial perception is also very relevant in sports. For example, a study found that cricket players who were faster at picking up information from briefly presented visual displays were significantly better batsmen in an actual game. A 2015 study published in the Journal of Vision found that soccer players had higher perceptual ability for body kinematics such as processing multitasking crowd scenes which involve pedestrians crossing a street or complex dynamic visual scenes. Another study published in the Journal of Human Kinetics on fencing athletes found that achievement level was highly correlated with spatial perceptual skills such as visual discrimination, visual-spatial relationships, visual sequential memory, narrow attentional focus and visual information processing. A review published in the journal Neuropsychologia found that spatial perception involves attributing meaning to an object or space, so that their sensory processing is actually part of semantic processing of the incoming visual information. The review also found that spatial perception involves the human visual system in the brain and the parietal lobule which is responsible for visuomotor processing and visually goal-directed action. Studies have also found that individuals who played first person shooting games had better spatial perceptual skills like faster and more accurate performance in a peripheral and identification task while simultaneously performing a central search. Researchers suggested that, in addition to enhancing the ability to divide attention, playing action games significantly enhances perceptual skills like top-down guidance of attention to possible target locations.
Mental rotation is also unique and distinct from the other spatial abilities because it also involves areas associated with motor simulation in the brain.
Spatial visualization is characterized as complicated multi-step manipulations of spatially presented information. It involves visual imagery which is the ability to mentally represent visual appearances of an object, and spatial imagery which consists of mentally representing spatial relations between the parts or locations of the objects or movements.
Spatial visualization is especially important in the domains of science and technology. For example, an astronomer must mentally visualize the structures of a solar system and the motions of the objects within it. An engineer mentally visualizes the interactions of the parts of a machine or building that they are assigned to design or work with. Chemists must be able to understand formulas which can be viewed as abstract models of molecules with most of the spatial information deleted; spatial skills are important in restoring that information when more detailed mental models of the molecules are needed in the formulas.
Spatial visualization also involves imagining and working with visual details of measurement, shapes, motion, features and properties through mental imagery and using this spatial relations to derive at an understanding to a problem. Whereas spatial perception involves understanding externally via the senses, spatial visualization is the understanding internally through mental imagery in one's mind.
Visual penetrative ability is least common spatial visualization task which involves ability to imagine what is inside an object based on the features outside.
In an extensive review of research into sex differences, Maccoby and Jacklin reported that males generally perform better on spatial ability tasks than do females, in congruence to other research findings. They also found that practice leads to rapid enhancements in spatial ability in both sexes.
Researchers have found that spatial ability plays an important role in advanced educational credentials in science, technology, engineering, and mathematics (STEM). From studies, it has been indicated that the probability of getting an advanced degree in STEM increases in positive relation to the level of one's spatial ability. For example, a 2009 study published in the Journal of Educational Psychology found that 45% of those with STEM PhDs were within top percentage of high spatial ability in a group of 400,000 participants who were analyzed for 11 years since they were in the 12th grade. Only less than 10% of those with STEM PhDs were below the top quarter in spatial ability during adolescence. The researchers then concluded how important spatial ability is for STEM and as a factor in achieving advanced educational success in that field.
Current literature also indicates that mathematics involves visuo-spatial processing. Studies have found that gifted students in math, for instance, perform better in spatial visualization than non-gifted students. A 2008 review published in the journal of Neuroscience Biobehavioural Reviews found evidence that visuo-spatial processing is intuitively involved in many aspects of processing numbers and calculating in math. For example, meaning of a digit in a multi-digit number is coded following spatial information given its relation to its position within the number. Another study found that numerical estimation might rely on integrating different visual-spatial cues (diameter, size, location, measurement) to infer an answer. A study published in 2014 also found evidence that mathematical calculation relies on the integration of various spatial processes. Another 2015 study published in the journal of Frontiers in Psychology also found that numerical processing and arithmetic performance may rely on visual perceptual ability.
Johns Hopkins University. "What is spatial ability?" (PDF). Johns Hopkins University. http://web.jhu.edu/cty/STBguide.pdf
Johns Hopkins University. "What is spatial ability?" (PDF). Johns Hopkins University. http://web.jhu.edu/cty/STBguide.pdf
(us), National Academy of Sciences; (us), National Academy of Engineering; Engineering, and Institute of Medicine (US) Committee on Maximizing the Potential of Women in Academic Science and (2006-01-01). "Women in Science and Mathematics". National Academies Press (US). {{cite journal}}: Cite journal requires |journal= (help) https://www.ncbi.nlm.nih.gov/books/NBK23762/
Johns Hopkins University. "What is spatial ability?" (PDF). Johns Hopkins University. http://web.jhu.edu/cty/STBguide.pdf
Donnon, Tyrone; DesCôteaux, Jean-Gaston; Violato, Claudio (2005-10-01). "Impact of cognitive imaging and sex differences on the development of laparoscopic suturing skills". Canadian Journal of Surgery. 48 (5): 387–393. ISSN 0008-428X. PMC 3211902. PMID 16248138. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3211902
Linn, Marcia C.; Petersen, Anne C. (1985). "Emergence and Characterization of Sex Differences in Spatial Ability: A Meta-Analysis". Child Development. 56 (6): 1479–1498. doi:10.1111/j.1467-8624.1985.tb00213.x. PMID 4075870. https://www.researchgate.net/publication/19086027
Donnon, Tyrone; DesCôteaux, Jean-Gaston; Violato, Claudio (2005-10-01). "Impact of cognitive imaging and sex differences on the development of laparoscopic suturing skills". Canadian Journal of Surgery. 48 (5): 387–393. ISSN 0008-428X. PMC 3211902. PMID 16248138. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3211902
Linn, Marcia C.; Petersen, Anne C. (1985). "Emergence and Characterization of Sex Differences in Spatial Ability: A Meta-Analysis". Child Development. 56 (6): 1479–1498. doi:10.1111/j.1467-8624.1985.tb00213.x. PMID 4075870. https://www.researchgate.net/publication/19086027
Shelton, Jill T.; Elliott, Emily M.; Hill, B. D.; Calamia, Matthew R.; Gouvier, Wm. Drew (2009-05-01). "A Comparison of Laboratory and Clinical Working Memory Tests and Their Prediction of Fluid Intelligence". Intelligence. 37 (3): 283. doi:10.1016/j.intell.2008.11.005. ISSN 0160-2896. PMC 2818304. PMID 20161647. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2818304
Donnon, Tyrone; DesCôteaux, Jean-Gaston; Violato, Claudio (2005-10-01). "Impact of cognitive imaging and sex differences on the development of laparoscopic suturing skills". Canadian Journal of Surgery. 48 (5): 387–393. ISSN 0008-428X. PMC 3211902. PMID 16248138. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3211902
Simmons, Alison (2003). "Spatial Perception from a Cartesian Point of View" (PDF). Philosophical Topics. 31: 395–423. doi:10.5840/philtopics2003311/22. http://www.people.fas.harvard.edu/~asimmons/pdfs/PT%20Spatial%20Perception.pdf
Linn, Marcia C.; Petersen, Anne C. (1985). "Emergence and Characterization of Sex Differences in Spatial Ability: A Meta-Analysis". Child Development. 56 (6): 1479–1498. doi:10.1111/j.1467-8624.1985.tb00213.x. PMID 4075870. https://www.researchgate.net/publication/19086027
Deary, I. J.; Mitchell, H. (1989-01-01). "Inspection time and high-speed ball games". Perception. 18 (6): 789–792. doi:10.1068/p180789. ISSN 0301-0066. PMID 2628929. S2CID 27010211. /wiki/Doi_(identifier)
Romeas, Thomas; Faubert, Jocelyn (2015-09-01). "Assessment of sport specific and non-specific biological motion perception in soccer athletes shows a fundamental perceptual ability advantage over non-athletes for recognizing body kinematics". Journal of Vision. 15 (12): 504. doi:10.1167/15.12.504. ISSN 1534-7362. https://doi.org/10.1167%2F15.12.504
Hijazi, Mona Mohamed Kamal (2013-12-31). "Attention, Visual Perception and their Relationship to Sport Performance in Fencing". Journal of Human Kinetics. 39: 195–201. doi:10.2478/hukin-2013-0082. ISSN 1640-5544. PMC 3916930. PMID 24511355. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3916930
Jeannerod, M.; Jacob, P. (2005-01-01). "Visual cognition: a new look at the two-visual systems model" (PDF). Neuropsychologia. 43 (2): 301–312. doi:10.1016/j.neuropsychologia.2004.11.016. ISSN 0028-3932. PMID 15707914. S2CID 13225551. https://jeannicod.ccsd.cnrs.fr/ijn_00000569/file/ijn_00000569_00.pdf
Jeannerod, M.; Jacob, P. (2005-01-01). "Visual cognition: a new look at the two-visual systems model" (PDF). Neuropsychologia. 43 (2): 301–312. doi:10.1016/j.neuropsychologia.2004.11.016. ISSN 0028-3932. PMID 15707914. S2CID 13225551. https://jeannicod.ccsd.cnrs.fr/ijn_00000569/file/ijn_00000569_00.pdf
Wu, Sijing; Spence, Ian (2013-05-01). "Playing shooter and driving videogames improves top-down guidance in visual search". Attention, Perception, & Psychophysics. 75 (4): 673–686. doi:10.3758/s13414-013-0440-2. ISSN 1943-393X. PMID 23460295. S2CID 10088645. /wiki/Doi_(identifier)
Wu, Sijing; Spence, Ian (2013-05-01). "Playing shooter and driving videogames improves top-down guidance in visual search". Attention, Perception, & Psychophysics. 75 (4): 673–686. doi:10.3758/s13414-013-0440-2. ISSN 1943-393X. PMID 23460295. S2CID 10088645. /wiki/Doi_(identifier)
"Online Psychology Laboratory - About Mental Rotation". opl.apa.org. Retrieved 2016-01-09. http://opl.apa.org/Experiments/About/AboutMentalRotation.aspx
"Online Psychology Laboratory - About Mental Rotation". opl.apa.org. Retrieved 2016-01-09. http://opl.apa.org/Experiments/About/AboutMentalRotation.aspx
"Online Psychology Laboratory - About Mental Rotation". opl.apa.org. Retrieved 2016-01-09. http://opl.apa.org/Experiments/About/AboutMentalRotation.aspx
"Online Psychology Laboratory - About Mental Rotation". opl.apa.org. Retrieved 2016-01-09. http://opl.apa.org/Experiments/About/AboutMentalRotation.aspx
Latham, Andrew J.; Patston, Lucy L. M.; Tippett, Lynette J. (2013-09-13). "The virtual brain: 30 years of video-game play and cognitive abilities". Frontiers in Psychology. 4: 629. doi:10.3389/fpsyg.2013.00629. ISSN 1664-1078. PMC 3772618. PMID 24062712. /wiki/Lynette_Tippett
Levine, S.C.; Ratliff, K.R.; Huttenlocher, J.; Cannon, J. (2012-03-01). "Early Puzzle Play: A predictor of preschoolers' spatial transformation skill". Developmental Psychology. 48 (2): 530–542. doi:10.1037/a0025913. ISSN 0012-1649. PMC 3289766. PMID 22040312. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3289766
Baron-Cohen, Simon; Ashwin, Emma; Ashwin, Chris; Tavassoli, Teresa; Chakrabarti, Bhismadev (2009-05-27). "Talent in autism: hyper-systemizing, hyper-attention to detail and sensory hypersensitivity". Philosophical Transactions of the Royal Society B: Biological Sciences. 364 (1522): 1377–1383. doi:10.1098/rstb.2008.0337. ISSN 0962-8436. PMC 2677592. PMID 19528020. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2677592
Hopkins, J. Roy (2014-05-10). Adolescence: The Transitional Years. Academic Press. ISBN 9781483265650. 9781483265650
Zacks, Jeffrey M. (2008-01-01). "Neuroimaging studies of mental rotation: a meta-analysis and review". Journal of Cognitive Neuroscience. 20 (1): 1–19. doi:10.1162/jocn.2008.20013. ISSN 0898-929X. PMID 17919082. S2CID 14543380. https://digitalcommons.wustl.edu/cgi/viewcontent.cgi?article=4360&context=open_access_pubs
Linn, Marcia C.; Petersen, Anne C. (1985). "Emergence and Characterization of Sex Differences in Spatial Ability: A Meta-Analysis". Child Development. 56 (6): 1479–1498. doi:10.1111/j.1467-8624.1985.tb00213.x. PMID 4075870. https://www.researchgate.net/publication/19086027
Van Garderen, Delinda (2006). "Spatial Visualization, Visual Imagery, and Mathematical Problem Solving of Students With Varying Abilities" (PDF). Journal of Learning Disabilities. 39 (6). http://ideal-group.org/visualization-research/Spatial-Visualization-Visual-Imagery-and-Mathematical-Problem-Solving-of-Students-with-Varying-Abilities.pdf
Johns Hopkins University. "What is spatial ability?" (PDF). Johns Hopkins University. http://web.jhu.edu/cty/STBguide.pdf
Johns Hopkins University. "What is spatial ability?" (PDF). Johns Hopkins University. http://web.jhu.edu/cty/STBguide.pdf
Johns Hopkins University. "What is spatial ability?" (PDF). Johns Hopkins University. http://web.jhu.edu/cty/STBguide.pdf
Sims, V. K.; Hegarty, M. (1997-05-01). "Mental animation in the visuospatial sketchpad: evidence from dual-task studies". Memory & Cognition. 25 (3): 321–332. doi:10.3758/bf03211288. ISSN 0090-502X. PMID 9184484. /wiki/Mary_Hegarty_(scientist)
Sims, V. K.; Hegarty, M. (1997-05-01). "Mental animation in the visuospatial sketchpad: evidence from dual-task studies". Memory & Cognition. 25 (3): 321–332. doi:10.3758/bf03211288. ISSN 0090-502X. PMID 9184484. /wiki/Mary_Hegarty_(scientist)
Hegarty, M. (1992-09-01). "Mental animation: inferring motion from static displays of mechanical systems". Journal of Experimental Psychology: Learning, Memory, and Cognition. 18 (5): 1084–1102. CiteSeerX 10.1.1.167.8298. doi:10.1037/0278-7393.18.5.1084. ISSN 0278-7393. PMID 1402712. /wiki/Mary_Hegarty_(scientist)
Glass, Leila; Krueger, Frank; Solomon, Jeffrey; Raymont, Vanessa; Grafman, Jordan (2013-07-01). "Mental Paper Folding Performance Following Penetrating Traumatic Brain Injury in Combat Veterans: A Lesion Mapping Study". Cerebral Cortex. 23 (7): 1663–1672. doi:10.1093/cercor/bhs153. ISSN 1047-3211. PMC 3673178. PMID 22669970. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3673178
Harris, Justin; Hirsh-Pasek, Kathy; Newcombe, Nora S. (2013-05-01). "Understanding spatial transformations: similarities and differences between mental rotation and mental folding". Cognitive Processing. 14 (2): 105–115. doi:10.1007/s10339-013-0544-6. ISSN 1612-4790. PMID 23397105. S2CID 6072708. /wiki/Doi_(identifier)
Glass, Leila; Krueger, Frank; Solomon, Jeffrey; Raymont, Vanessa; Grafman, Jordan (2013-07-01). "Mental Paper Folding Performance Following Penetrating Traumatic Brain Injury in Combat Veterans: A Lesion Mapping Study". Cerebral Cortex. 23 (7): 1663–1672. doi:10.1093/cercor/bhs153. ISSN 1047-3211. PMC 3673178. PMID 22669970. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3673178
Titus, Sarah (2009). "Characterizing and Improving Spatial Visualization Skills". Journal of Geoscience Education. 57 (4): 242–254. Bibcode:2009JGeEd..57..242T. doi:10.5408/1.3559671. S2CID 8733070. /wiki/Bibcode_(identifier)
Shelton, Jill T.; Elliott, Emily M.; Hill, B. D.; Calamia, Matthew R.; Gouvier, Wm. Drew (2009-05-01). "A Comparison of Laboratory and Clinical Working Memory Tests and Their Prediction of Fluid Intelligence". Intelligence. 37 (3): 283. doi:10.1016/j.intell.2008.11.005. ISSN 0160-2896. PMC 2818304. PMID 20161647. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2818304
Baddeley, A.D. (2000). "The episodic buffer: A new component of working memory?". Trends in Cognitive Sciences. 4 (11): 417–423. doi:10.1016/S1364-6613(00)01538-2. PMID 11058819. S2CID 14333234. https://doi.org/10.1016%2FS1364-6613%2800%2901538-2
Donnon, Tyrone; DesCôteaux, Jean-Gaston; Violato, Claudio (2005-10-01). "Impact of cognitive imaging and sex differences on the development of laparoscopic suturing skills". Canadian Journal of Surgery. 48 (5): 387–393. ISSN 0008-428X. PMC 3211902. PMID 16248138. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3211902
Donnon, Tyrone; DesCôteaux, Jean-Gaston; Violato, Claudio (2005-10-01). "Impact of cognitive imaging and sex differences on the development of laparoscopic suturing skills". Canadian Journal of Surgery. 48 (5): 387–393. ISSN 0008-428X. PMC 3211902. PMID 16248138. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3211902
Wai, Jonathan (2009). "Spatial Ability for STEM Domains: Aligning Over 50 Years of cumulative psychological Knowledge solidifies Its importance" (PDF). Journal of Educational Psychology. 101 (4): 817–835. doi:10.1037/a0016127. S2CID 17233758. https://my.vanderbilt.edu/smpy/files/2013/02/Wai2009SpatialAbility.pdf
Tosto, Maria Grazia; Hanscombe, Ken B.; Haworth, Claire M.A.; Davis, Oliver S.P.; Petrill, Stephen A.; Dale, Philip S.; Malykh, Sergey; Plomin, Robert; Kovas, Yulia (2014-05-01). "Why do spatial abilities predict mathematical performance?". Developmental Science. 17 (3): 462–470. doi:10.1111/desc.12138. ISSN 1363-755X. PMC 3997754. PMID 24410830. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3997754
Wai, Jonathan (2009). "Spatial Ability for STEM Domains: Aligning Over 50 Years of cumulative psychological Knowledge solidifies Its importance" (PDF). Journal of Educational Psychology. 101 (4): 817–835. doi:10.1037/a0016127. S2CID 17233758. https://my.vanderbilt.edu/smpy/files/2013/02/Wai2009SpatialAbility.pdf
Wai, Jonathan (2009). "Spatial Ability for STEM Domains: Aligning Over 50 Years of cumulative psychological Knowledge solidifies Its importance" (PDF). Journal of Educational Psychology. 101 (4): 817–835. doi:10.1037/a0016127. S2CID 17233758. https://my.vanderbilt.edu/smpy/files/2013/02/Wai2009SpatialAbility.pdf
Wai, Jonathan (2009). "Spatial Ability for STEM Domains: Aligning Over 50 Years of cumulative psychological Knowledge solidifies Its importance" (PDF). Journal of Educational Psychology. 101 (4): 817–835. doi:10.1037/a0016127. S2CID 17233758. https://my.vanderbilt.edu/smpy/files/2013/02/Wai2009SpatialAbility.pdf
Johns Hopkins University. "What is spatial ability?" (PDF). Johns Hopkins University. http://web.jhu.edu/cty/STBguide.pdf
Johns Hopkins University. "What is spatial ability?" (PDF). Johns Hopkins University. http://web.jhu.edu/cty/STBguide.pdf
Johns Hopkins University. "What is spatial ability?" (PDF). Johns Hopkins University. http://web.jhu.edu/cty/STBguide.pdf
Titus, Sarah (2009). "Characterizing and Improving Spatial Visualization Skills". Journal of Geoscience Education. 57 (4): 242–254. Bibcode:2009JGeEd..57..242T. doi:10.5408/1.3559671. S2CID 8733070. /wiki/Bibcode_(identifier)
Van Garderen, Delinda (2006). "Spatial Visualization, Visual Imagery, and Mathematical Problem Solving of Students With Varying Abilities" (PDF). Journal of Learning Disabilities. 39 (6). http://ideal-group.org/visualization-research/Spatial-Visualization-Visual-Imagery-and-Mathematical-Problem-Solving-of-Students-with-Varying-Abilities.pdf
de Hevia, Maria Dolores; Vallar, Giuseppe; Girelli, Luisa (2008-10-01). "Visualizing numbers in the mind's eye: the role of visuo-spatial processes in numerical abilities". Neuroscience and Biobehavioral Reviews. 32 (8): 1361–1372. doi:10.1016/j.neubiorev.2008.05.015. ISSN 0149-7634. PMID 18584868. S2CID 207088066. /wiki/Doi_(identifier)
Gebuis, Titia; Reynvoet, Bert (2012-01-01). "The role of visual information in numerosity estimation". PLOS ONE. 7 (5): e37426. Bibcode:2012PLoSO...737426G. doi:10.1371/journal.pone.0037426. ISSN 1932-6203. PMC 3355123. PMID 22616007. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3355123
Marghetis, Tyler; Núñez, Rafael; Bergen, Benjamin K. (2014-01-01). "Doing arithmetic by hand: hand movements during exact arithmetic reveal systematic, dynamic spatial processing". Quarterly Journal of Experimental Psychology. 67 (8): 1579–1596. doi:10.1080/17470218.2014.897359. ISSN 1747-0226. PMID 25051274. https://doi.org/10.1080%2F17470218.2014.897359
Zhou, Xinlin; Wei, Wei; Zhang, Yiyun; Cui, Jiaxin; Chen, Chuansheng (2015-01-01). "Visual perception can account for the close relation between numerosity processing and computational fluency". Frontiers in Psychology. 6: 1364. doi:10.3389/fpsyg.2015.01364. ISSN 1664-1078. PMC 4563146. PMID 26441740. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4563146
Kozhevnikov, Maria; Motes, Michael A.; Hegarty, Mary (2007). "Spatial Visualization in Physics Problem Solving". Cognitive Science. 31 (4): 549–579. doi:10.1080/15326900701399897. ISSN 1551-6709. PMID 21635308. /wiki/Mary_Hegarty_(scientist)
(us), National Academy of Sciences; (us), National Academy of Engineering; Engineering, and Institute of Medicine (US) Committee on Maximizing the Potential of Women in Academic Science and (2006-01-01). "Women in Science and Mathematics". National Academies Press (US). {{cite journal}}: Cite journal requires |journal= (help) https://www.ncbi.nlm.nih.gov/books/NBK23762/
Ha, Oai; Fang, Ning (2016). "Spatial Ability in Learning Engineering Mechanics: Critical Review". Journal of Professional Issues in Engineering Education and Practice. 142 (2): 04015014. doi:10.1061/(ASCE)EI.1943-5541.0000266. Retrieved 2016-01-15. https://www.researchgate.net/publication/282853648