Only finitely many Hurwitz surfaces occur with each genus. The function h ( g ) {\displaystyle h(g)} mapping the genus to the number of Hurwitz surfaces with that genus is unbounded, even though most of its values are zero. The sum
converges for s > 1 / 3 {\displaystyle s>1/3} , implying in an approximate sense that the genus of the n {\displaystyle n} th Hurwitz surface grows at least as a cubic function of n {\displaystyle n} (Larsen 2001).
The Hurwitz surface of least genus is the Klein quartic of genus 3, with automorphism group the projective special linear group PSL(2,7), of order 84(3 − 1) = 168 = 23·3·7, which is a simple group; (or order 336 if one allows orientation-reversing isometries). The next possible genus is 7, possessed by the Macbeath surface, with automorphism group PSL(2,8), which is the simple group of order 84(7 − 1) = 504 = 23·32·7; if one includes orientation-reversing isometries, the group is of order 1,008.
An interesting phenomenon occurs in the next possible genus, namely 14. Here there is a triple of distinct Riemann surfaces with the identical automorphism group (of order 84(14 − 1) = 1092 = 22·3·7·13). The explanation for this phenomenon is arithmetic. Namely, in the ring of integers of the appropriate number field, the rational prime 13 splits as a product of three distinct prime ideals. The principal congruence subgroups defined by the triplet of primes produce Fuchsian groups corresponding to the first Hurwitz triplet.
The sequence of allowable values for the genus of a Hurwitz surface begins