Nonnegative functions whose derivative is completely monotone are called Bernstein functions. Every Bernstein function has the Lévy–Khintchine representation: f ( t ) = a + b t + ∫ 0 ∞ ( 1 − e − t x ) μ ( d x ) , {\displaystyle f(t)=a+bt+\int _{0}^{\infty }\left(1-e^{-tx}\right)\mu (dx),} where a , b ≥ 0 {\displaystyle a,b\geq 0} and μ {\displaystyle \mu } is a measure on the positive real half-line such that ∫ 0 ∞ ( 1 ∧ x ) μ ( d x ) < ∞ . {\displaystyle \int _{0}^{\infty }\left(1\wedge x\right)\mu (dx)<\infty .}