Let A {\displaystyle {\mathcal {A}}} be a *-Algebra. An element a ∈ A {\displaystyle a\in {\mathcal {A}}} is called normal if it commutes with a ∗ {\displaystyle a^{*}} , i.e. it satisfies the equation a a ∗ = a ∗ a {\displaystyle aa^{*}=a^{*}a} .2
The set of normal elements is denoted by A N {\displaystyle {\mathcal {A}}_{N}} or N ( A ) {\displaystyle N({\mathcal {A}})} .
A special case of particular importance is the case where A {\displaystyle {\mathcal {A}}} is a complete normed *-algebra, that satisfies the C*-identity ( ‖ a ∗ a ‖ = ‖ a ‖ 2 ∀ a ∈ A {\displaystyle \left\|a^{*}a\right\|=\left\|a\right\|^{2}\ \forall a\in {\mathcal {A}}} ), which is called a C*-algebra.
Let A {\displaystyle {\mathcal {A}}} be a *-algebra. Then:
Let a ∈ A N {\displaystyle a\in {\mathcal {A}}_{N}} be a normal element of a *-algebra A {\displaystyle {\mathcal {A}}} . Then:
Let a ∈ A N {\displaystyle a\in {\mathcal {A}}_{N}} be a normal element of a C*-algebra A {\displaystyle {\mathcal {A}}} . Then:
Dixmier 1977, p. 4. - Dixmier, Jacques (1977). C*-algebras. Translated by Jellett, Francis. Amsterdam/New York/Oxford: North-Holland. ISBN 0-7204-0762-1. ↩
Dixmier 1977, p. 5. - Dixmier, Jacques (1977). C*-algebras. Translated by Jellett, Francis. Amsterdam/New York/Oxford: North-Holland. ISBN 0-7204-0762-1. ↩
Dixmier 1977, p. 13. - Dixmier, Jacques (1977). C*-algebras. Translated by Jellett, Francis. Amsterdam/New York/Oxford: North-Holland. ISBN 0-7204-0762-1. ↩
Dixmier 1977, pp. 3–4. - Dixmier, Jacques (1977). C*-algebras. Translated by Jellett, Francis. Amsterdam/New York/Oxford: North-Holland. ISBN 0-7204-0762-1. ↩
Werner 2018, p. 518. - Werner, Dirk (2018). Funktionalanalysis (in German) (8 ed.). Springer. ISBN 978-3-662-55407-4. ↩
Heuser 1982, p. 390. - Heuser, Harro (1982). Functional analysis. Translated by Horvath, John. John Wiley & Sons Ltd. ISBN 0-471-10069-2. ↩
Werner 2018, pp. 284–285, 518. - Werner, Dirk (2018). Funktionalanalysis (in German) (8 ed.). Springer. ISBN 978-3-662-55407-4. ↩