Godsil, Christopher and Meagher, Karen. Erdõs-Ko-Rado Theorems: Algebraic Approaches, p. 51 (Cambridge University Press 2016). https://books.google.com/books?id=P0XjCgAAQBAJ&pg=PA51
Horn, Roger A.; Johnson, Charles R. (2012). Matrix Analysis. Cambridge University Press. p. 70. ISBN 9780521839402. 9780521839402
Horn, Roger A.; Johnson, Charles R. (2012). Matrix Analysis. Cambridge University Press. p. 127. ISBN 9780521839402. 9780521839402
Horn, Roger A.; Johnson, Charles R. (2013). Matrix Analysis, second edition. Cambridge University Press. ISBN 9780521839402. 9780521839402
Without loss of generality, one may suppose that the first matrix
A
=
(
a
i
,
j
)
{\displaystyle A=(a_{i,j})}
is diagonal. In this case, commutativity implies that if an entry
b
i
,
j
{\displaystyle b_{i,j}}
of the second matrix is nonzero, then
a
i
,
i
=
a
j
,
j
.
{\displaystyle a_{i,i}=a_{j,j}.}
After a permutation of rows and columns, the two matrices become simultaneously block diagonal. In each block, the first matrix is the product of an identity matrix, and the second one is a diagonalizable matrix. So, diagonalizing the blocks of the second matrix does change the first matrix, and allows a simultaneous diagonalization. /wiki/Without_loss_of_generality
"Proofs Homework Set 10 MATH 217 — WINTER 2011" (PDF). Retrieved 10 July 2022. http://www.math.lsa.umich.edu/~tfylam/Math217/proofs10-sol.pdf
Frobenius, G. (1877). "Ueber lineare Substitutionen und bilineare Formen". Journal für die reine und angewandte Mathematik. 84: 1–63.
Feit, Walter; Fine, N. J. (1960-03-01). "Pairs of commuting matrices over a finite field". Duke Mathematical Journal. 27 (1). doi:10.1215/s0012-7094-60-02709-5. ISSN 0012-7094. https://dx.doi.org/10.1215/s0012-7094-60-02709-5
"Do Diagonal Matrices Always Commute?". Stack Exchange. March 15, 2016. Retrieved August 4, 2018. https://math.stackexchange.com/q/1697991
"Linear Algebra WebNotes part 2". math.vanderbilt.edu. Retrieved 2022-07-10. https://math.vanderbilt.edu/sapirmv/msapir/jan22.html
Drazin, M. (1951), "Some Generalizations of Matrix Commutativity", Proceedings of the London Mathematical Society, 3, 1 (1): 222–231, doi:10.1112/plms/s3-1.1.222 /wiki/Doi_(identifier)