Given the alphabet Σ = { a , b , c } {\displaystyle \Sigma =\{a,b,c\}} , a possible dependency relation is D = { ( a , b ) , ( b , a ) , ( a , c ) , ( c , a ) , ( a , a ) , ( b , b ) , ( c , c ) } {\displaystyle D=\{(a,b),\,(b,a),\,(a,c),\,(c,a),\,(a,a),\,(b,b),\,(c,c)\}} , see picture.
The corresponding independency is I = { ( b , c ) , ( c , b ) } {\displaystyle I=\{(b,c),\,(c,b)\}} . Then e.g. the symbols b , c {\displaystyle b,c} are independent of one another, and e.g. a , b {\displaystyle a,b} are dependent. The string a c b b a {\displaystyle acbba} is equivalent to a b c b a {\displaystyle abcba} and to a b b c a {\displaystyle abbca} , but to no other string.
IJsbrand Jan Aalbersberg and Grzegorz Rozenberg (Mar 1988). "Theory of traces". Theoretical Computer Science. 60 (1): 1–82. doi:10.1016/0304-3975(88)90051-5. https://doi.org/10.1016%2F0304-3975%2888%2990051-5 ↩
Vasconcelos, Vasco Thudichum (1992). Trace semantics for concurrent objects (MsC thesis). Keio University. CiteSeerX 10.1.1.47.7099. /wiki/CiteSeerX_(identifier) ↩
Mazurkiewicz, Antoni (1995). "Introduction to Trace Theory" (PDF). In Rozenberg, G.; Diekert, V. (eds.). The Book of Traces. Singapore: World Scientific. ISBN 981-02-2058-8. Retrieved 18 April 2021. 981-02-2058-8 ↩