in which E i {\displaystyle \scriptstyle E_{i}} is the orbital eccentric anomaly of satellite i {\displaystyle i} , M i {\displaystyle \scriptstyle M_{i}} is the mean anomaly, e i {\displaystyle \scriptstyle e_{i}} is the eccentricity, and δ t clock , i ( t i , E i ) = δ t clock,sv , i ( t i ) + δ t orbit-relativ , i ( E i ) {\displaystyle \scriptstyle \delta t_{{\text{clock}},i}(t_{i},\,E_{i})\;=\;\delta t_{{\text{clock,sv}},i}(t_{i})\,+\,\delta t_{{\text{orbit-relativ}},i}(E_{i})} .
( t i E i ) ← ( t i E i ) − ( 1 0 M ˙ i ( t i ) 1 − e i cos E i − 1 1 − e i cos E i ) ( Δ t i Δ M i ) {\displaystyle \scriptstyle {\begin{pmatrix}t_{i}\\E_{i}\\\end{pmatrix}}\leftarrow {\begin{pmatrix}t_{i}\\E_{i}\\\end{pmatrix}}-{\begin{pmatrix}1&&0\\{\frac {{\dot {M}}_{i}(t_{i})}{1-e_{i}\cos E_{i}}}&&-{\frac {1}{1-e_{i}\cos E_{i}}}\\\end{pmatrix}}{\begin{pmatrix}\Delta t_{i}\\\Delta M_{i}\\\end{pmatrix}}}
Misra, P. and Enge, P., Global Positioning System: Signals, Measurements, and Performance, 2nd, Ganga-Jamuna Press, 2006. ↩
The interface specification of NAVSTAR GLOBAL POSITIONING SYSTEM http://www.navcen.uscg.gov/pdf/IS-GPS-200D.pdf ↩
3-dimensional distance is given by r ( r A , r B ) = | r A − r B | = ( x A − x B ) 2 + ( y A − y B ) 2 + ( z A − z B ) 2 {\displaystyle \displaystyle r({\boldsymbol {r}}_{A},\,{\boldsymbol {r}}_{B})=|{\boldsymbol {r}}_{A}-{\boldsymbol {r}}_{B}|={\sqrt {(x_{A}-x_{B})^{2}+(y_{A}-y_{B})^{2}+(z_{A}-z_{B})^{2}}}} where r A = ( x A , y A , z A ) {\displaystyle \displaystyle {\boldsymbol {r}}_{A}=(x_{A},y_{A},z_{A})} and r B = ( x B , y B , z B ) {\displaystyle \displaystyle {\boldsymbol {r}}_{B}=(x_{B},y_{B},z_{B})} represented in inertial frame. /wiki/Distance#Geometry ↩