Any function T of the form
T ( x ) = a 0 + ∑ n = 1 N a n cos ( n x ) + ∑ n = 1 N b n sin ( n x ) ( x ∈ R ) {\displaystyle T(x)=a_{0}+\sum _{n=1}^{N}a_{n}\cos(nx)+\sum _{n=1}^{N}b_{n}\sin(nx)\qquad (x\in \mathbb {R} )}
with coefficients a n , b n ∈ C {\displaystyle a_{n},b_{n}\in \mathbb {C} } and at least one of the highest-degree coefficients a N {\displaystyle a_{N}} and b N {\displaystyle b_{N}} non-zero, is called a complex trigonometric polynomial of degree N.1 Using Euler's formula the polynomial can be rewritten as
T ( x ) = ∑ n = − N N c n e i n x ( x ∈ R ) . {\displaystyle T(x)=\sum _{n=-N}^{N}c_{n}e^{inx}\qquad (x\in \mathbb {R} ).} with c n ∈ C {\displaystyle c_{n}\in \mathbb {C} } .
Analogously, letting coefficients a n , b n ∈ R {\displaystyle a_{n},b_{n}\in \mathbb {R} } , and at least one of a N {\displaystyle a_{N}} and b N {\displaystyle b_{N}} non-zero or, equivalently, c n ∈ R {\displaystyle c_{n}\in \mathbb {R} } and c n = c ¯ − n {\displaystyle c_{n}={\bar {c}}_{-n}} for all n ∈ [ − N , N ] {\displaystyle n\in [-N,N]} , then
t ( x ) = a 0 + ∑ n = 1 N a n cos ( n x ) + ∑ n = 1 N b n sin ( n x ) ( x ∈ R ) {\displaystyle t(x)=a_{0}+\sum _{n=1}^{N}a_{n}\cos(nx)+\sum _{n=1}^{N}b_{n}\sin(nx)\qquad (x\in \mathbb {R} )}
is called a real trigonometric polynomial of degree N.23
A trigonometric polynomial can be considered a periodic function on the real line, with period some divisor of 2 π {\displaystyle 2\pi } , or as a function on the unit circle.
Trigonometric polynomials are dense in the space of continuous functions on the unit circle, with the uniform norm;4 this is a special case of the Stone–Weierstrass theorem. More concretely, for every continuous function f {\displaystyle f} and every ϵ > 0 {\displaystyle \epsilon >0} there exists a trigonometric polynomial T {\displaystyle T} such that | f ( z ) − T ( z ) | < ϵ {\displaystyle |f(z)-T(z)|<\epsilon } for all z {\displaystyle z} . Fejér's theorem states that the arithmetic means of the partial sums of the Fourier series of f {\displaystyle f} converge uniformly to f {\displaystyle f} provided f {\displaystyle f} is continuous on the circle; these partial sums can be used to approximate f {\displaystyle f} .
A trigonometric polynomial of degree N {\displaystyle N} has a maximum of 2 N {\displaystyle 2N} roots in a real interval [ a , a + 2 π ) {\displaystyle [a,a+2\pi )} unless it is the zero function.5
The Fejér-Riesz theorem states that every positive real trigonometric polynomial t ( x ) = ∑ n = − N N c n e i n x , {\displaystyle t(x)=\sum _{n=-N}^{N}c_{n}e^{inx},} satisfying t ( x ) > 0 {\displaystyle t(x)>0} for all x ∈ R {\displaystyle x\in \mathbb {R} } , can be represented as the square of the modulus of another (usually complex) trigonometric polynomial q ( x ) {\displaystyle q(x)} such that:6 t ( x ) = | q ( x ) | 2 = q ( x ) q ¯ ( x ) . {\displaystyle t(x)=|q(x)|^{2}=q(x){\bar {q}}(x).} Or, equivalently, every Laurent polynomial w ( z ) = ∑ n = − N N w n z n , {\displaystyle w(z)=\sum _{n=-N}^{N}w_{n}z^{n},} with w n ∈ C {\displaystyle w_{n}\in \mathbb {C} } that satisfies w ( ζ ) ≥ 0 {\displaystyle w(\zeta )\geq 0} for all ζ ∈ T {\displaystyle \zeta \in \mathbb {T} } can be written as: w ( ζ ) = | p ( ζ ) | 2 = p ( ζ ) p ¯ ( ζ ¯ ) , {\displaystyle w(\zeta )=|p(\zeta )|^{2}=p(\zeta ){\bar {p}}({\bar {\zeta }}),} for some polynomial p ( z ) {\displaystyle p(z)} .7
Rudin 1987, p. 88 - Rudin, Walter (1987), Real and complex analysis (3rd ed.), New York: McGraw-Hill, ISBN 978-0-07-054234-1, MR 0924157 https://mathscinet.ams.org/mathscinet-getitem?mr=0924157 ↩
Powell 1981, p. 150. - Powell, Michael J. D. (1981), Approximation Theory and Methods, Cambridge University Press, ISBN 978-0-521-29514-7 ↩
Hussen & Zeyani 2021. - Hussen, Abdulmtalb; Zeyani, Abdelbaset (2021). "Fejer-Riesz Theorem and Its Generalization". International Journal of Scientific and Research Publications. 11 (6): 286–292. doi:10.29322/IJSRP.11.06.2021.p11437. https://doi.org/10.29322%2FIJSRP.11.06.2021.p11437 ↩
Rudin 1987, Thm 4.25 - Rudin, Walter (1987), Real and complex analysis (3rd ed.), New York: McGraw-Hill, ISBN 978-0-07-054234-1, MR 0924157 https://mathscinet.ams.org/mathscinet-getitem?mr=0924157 ↩
Powell 1981, p. 150 - Powell, Michael J. D. (1981), Approximation Theory and Methods, Cambridge University Press, ISBN 978-0-521-29514-7 ↩
Riesz & Szőkefalvi-Nagy 1990, p. 117. - Riesz, Frigyes; Szőkefalvi-Nagy, Béla (1990). Functional analysis. New York: Dover Publications. ISBN 978-0-486-66289-3. ↩
Dritschel & Rovnyak 2010, pp. 223–254. - Dritschel, Michael A.; Rovnyak, James (2010). "The Operator Fejér-Riesz Theorem". A Glimpse at Hilbert Space Operators. Basel: Springer Basel. doi:10.1007/978-3-0346-0347-8_14. ISBN 978-3-0346-0346-1. https://doi.org/10.1007%2F978-3-0346-0347-8_14 ↩