For objects in three dimensions, the first definition states that the convex hull is the smallest possible convex bounding volume of the objects.
The definition using intersections of convex sets may be extended to non-Euclidean geometry, and the definition using convex combinations may be extended from Euclidean spaces to arbitrary real vector spaces or affine spaces; convex hulls may also be generalized in a more abstract way, to oriented matroids.
It is not obvious that the first definition makes sense: why should there exist a unique minimal convex set containing
X
{\displaystyle X}
, for every
X
{\displaystyle X}
? However, the second definition, the intersection of all convex sets containing
X
{\displaystyle X}
, is well-defined. It is a subset of every other convex set
Y
{\displaystyle Y}
that contains
X
{\displaystyle X}
, because
Y
{\displaystyle Y}
is included among the sets being intersected. Thus, it is exactly the unique minimal convex set containing
X
{\displaystyle X}
. Therefore, the first two definitions are equivalent.
Each convex set containing
X
{\displaystyle X}
must (by the assumption that it is convex) contain all convex combinations of points in
X
{\displaystyle X}
, so the set of all convex combinations is contained in the intersection of all convex sets containing
X
{\displaystyle X}
. Conversely, the set of all convex combinations is itself a convex set containing
X
{\displaystyle X}
, so it also contains the intersection of all convex sets containing
X
{\displaystyle X}
, and therefore the second and third definitions are equivalent.
In two dimensions, the convex hull is sometimes partitioned into two parts, the upper hull and the lower hull, stretching between the leftmost and rightmost points of the hull. More generally, for convex hulls in any dimension, one can partition the boundary of the hull into upward-facing points (points for which an upward ray is disjoint from the hull), downward-facing points, and extreme points. For three-dimensional hulls, the upward-facing and downward-facing parts of the boundary form topological disks.
The closed convex hull of
X
{\displaystyle X}
is the intersection of all closed half-spaces containing
X
{\displaystyle X}
.
If the convex hull of
X
{\displaystyle X}
is already a closed set itself (as happens, for instance, if
X
{\displaystyle X}
is a finite set or more generally a compact set), then it equals the closed convex hull. However, an intersection of closed half-spaces is itself closed, so when a convex hull is not closed it cannot be represented in this way.
If the open convex hull of a set
X
{\displaystyle X}
is
d
{\displaystyle d}
-dimensional, then every point of the hull belongs to an open convex hull of at most
2
d
{\displaystyle 2d}
points of
X
{\displaystyle X}
. The sets of vertices of a square, regular octahedron, or higher-dimensional cross-polytope provide examples where exactly
2
d
{\displaystyle 2d}
points are needed.
The convex hull of a finite point set
S
⊂
R
d
{\displaystyle S\subset \mathbb {R} ^{d}}
forms a convex polygon when
d
=
2
{\displaystyle d=2}
, or more generally a convex polytope in
R
d
{\displaystyle \mathbb {R} ^{d}}
. Each extreme point of the hull is called a vertex, and (by the Krein–Milman theorem) every convex polytope is the convex hull of its vertices. It is the unique convex polytope whose vertices belong to
S
{\displaystyle S}
and that encloses all of
S
{\displaystyle S}
.
For sets of points in general position, the convex hull is a simplicial polytope.
For convex hulls in two or three dimensions, the complexity of the corresponding algorithms is usually estimated in terms of
n
{\displaystyle n}
, the number of input points, and
h
{\displaystyle h}
, the number of points on the convex hull, which may be significantly smaller than
n
{\displaystyle n}
. For higher-dimensional hulls, the number of faces of other dimensions may also come into the analysis. Graham scan can compute the convex hull of
n
{\displaystyle n}
points in the plane in time
O
(
n
log
n
)
{\displaystyle O(n\log n)}
. For points in two and three dimensions, more complicated output-sensitive algorithms are known that compute the convex hull in time
O
(
n
log
h
)
{\displaystyle O(n\log h)}
. These include Chan's algorithm and the Kirkpatrick–Seidel algorithm. For dimensions
d
>
3
{\displaystyle d>3}
, the time for computing the convex hull is
O
(
n
⌊
d
/
2
⌋
)
{\displaystyle O(n^{\lfloor d/2\rfloor })}
, matching the worst-case output complexity of the problem. The convex hull of a simple polygon in the plane can be constructed in linear time.
Several other shapes can be defined from a set of points in a similar way to the convex hull, as the minimal superset with some property, the intersection of all shapes containing the points from a given family of shapes, or the union of all combinations of points for a certain type of combination. For instance:
Convex hulls have wide applications in many fields. Within mathematics, convex hulls are used to study polynomials, matrix eigenvalues, and unitary elements, and several theorems in discrete geometry involve convex hulls. They are used in robust statistics as the outermost contour of Tukey depth, are part of the bagplot visualization of two-dimensional data, and define risk sets of randomized decision rules. Convex hulls of indicator vectors of solutions to combinatorial problems are central to combinatorial optimization and polyhedral combinatorics. In economics, convex hulls can be used to apply methods of convexity in economics to non-convex markets. In geometric modeling, the convex hull property Bézier curves helps find their crossings, and convex hulls are part of the measurement of boat hulls. And in the study of animal behavior, convex hulls are used in a standard definition of the home range.
The definitions of a convex set as containing line segments between its points, and of a convex hull as the intersection of all convex supersets, apply to hyperbolic spaces as well as to Euclidean spaces. However, in hyperbolic space, it is also possible to consider the convex hulls of sets of ideal points, points that do not belong to the hyperbolic space itself but lie on the boundary of a model of that space. The boundaries of convex hulls of ideal points of three-dimensional hyperbolic space are analogous to ruled surfaces in Euclidean space, and their metric properties play an important role in the geometrization conjecture in low-dimensional topology. Hyperbolic convex hulls have also been used as part of the calculation of canonical triangulations of hyperbolic manifolds, and applied to determine the equivalence of knots.
See also the section on Brownian motion for the application of convex hulls to this subject, and the section on space curves for their application to the theory of developable surfaces.
The lower convex hull of points in the plane appears, in the form of a Newton polygon, in a letter from Isaac Newton to Henry Oldenburg in 1676. The term "convex hull" itself appears as early as the work of Garrett Birkhoff (1935), and the corresponding term in German appears earlier, for instance in Hans Rademacher's review of Kőnig (1922). Other terms, such as "convex envelope", were also used in this time frame. By 1938, according to Lloyd Dines, the term "convex hull" had become standard; Dines adds that he finds the term unfortunate, because the colloquial meaning of the word "hull" would suggest that it refers to the surface of a shape, whereas the convex hull includes the interior and not just the surface.
The terminology convex closure refers to the fact that the convex hull defines a closure operator. However, this term is also frequently used to refer to the closed convex hull, with which it should not be confused — see e.g Fan (1959), p.48. /wiki/Closure_operator
Rockafellar (1970), p. 12. - Rockafellar, R. Tyrrell (1970), Convex Analysis, Princeton Mathematical Series, vol. 28, Princeton, N.J.: Princeton University Press, MR 0274683 https://mathscinet.ams.org/mathscinet-getitem?mr=0274683
de Berg et al. (2008), p. 3. - de Berg, M.; van Kreveld, M.; Overmars, Mark; Schwarzkopf, O. (2008), Computational Geometry: Algorithms and Applications (3rd ed.), Springer
Williams & Rossignac (2005). See also Douglas Zare, answer to "the perimeter of a non-convex set", MathOverflow, May 16, 2014. - Williams, Jason; Rossignac, Jarek (2005), "Tightening: curvature-limiting morphological simplification", in Kobbelt, Leif; Shapiro, Vadim (eds.), Proceedings of the Tenth ACM Symposium on Solid and Physical Modeling 2005, Cambridge, Massachusetts, USA, June 13-15, 2005, ACM, pp. 107–112, doi:10.1145/1060244.1060257, hdl:1853/3736, S2CID 15514388 https://doi.org/10.1145%2F1060244.1060257
Oberman (2007). - Oberman, Adam M. (2007), "The convex envelope is the solution of a nonlinear obstacle problem", Proceedings of the American Mathematical Society, 135 (6): 1689–1694, doi:10.1090/S0002-9939-07-08887-9, MR 2286077 https://doi.org/10.1090%2FS0002-9939-07-08887-9
Knuth (1992). - Knuth, Donald E. (1992), Axioms and Hulls, Lecture Notes in Computer Science, vol. 606, Heidelberg: Springer-Verlag, doi:10.1007/3-540-55611-7, ISBN 3-540-55611-7, MR 1226891, S2CID 5452191, archived from the original on 2017-06-20, retrieved 2011-09-15 https://web.archive.org/web/20170620062425/http://www-cs-faculty.stanford.edu/~uno/aah.html
Rockafellar (1970), p. 12. - Rockafellar, R. Tyrrell (1970), Convex Analysis, Princeton Mathematical Series, vol. 28, Princeton, N.J.: Princeton University Press, MR 0274683 https://mathscinet.ams.org/mathscinet-getitem?mr=0274683
Rockafellar (1970), p. 12; Lay (1982), p. 17. - Rockafellar, R. Tyrrell (1970), Convex Analysis, Princeton Mathematical Series, vol. 28, Princeton, N.J.: Princeton University Press, MR 0274683 https://mathscinet.ams.org/mathscinet-getitem?mr=0274683
Rockafellar (1970), p. 12; Lay (1982), p. 17. - Rockafellar, R. Tyrrell (1970), Convex Analysis, Princeton Mathematical Series, vol. 28, Princeton, N.J.: Princeton University Press, MR 0274683 https://mathscinet.ams.org/mathscinet-getitem?mr=0274683
de Berg et al. (2008), p. 6. The idea of partitioning the hull into two chains comes from an efficient variant of Graham scan by Andrew (1979). - de Berg, M.; van Kreveld, M.; Overmars, Mark; Schwarzkopf, O. (2008), Computational Geometry: Algorithms and Applications (3rd ed.), Springer
Sontag (1982). - Sontag, Eduardo D. (1982), "Remarks on piecewise-linear algebra", Pacific Journal of Mathematics, 98 (1): 183–201, doi:10.2140/pjm.1982.98.183, MR 0644949, S2CID 18446330 https://projecteuclid.org/euclid.pjm/1102734396
Rockafellar (1970), p. 99. - Rockafellar, R. Tyrrell (1970), Convex Analysis, Princeton Mathematical Series, vol. 28, Princeton, N.J.: Princeton University Press, MR 0274683 https://mathscinet.ams.org/mathscinet-getitem?mr=0274683
Steinitz (1914); Gustin (1947); Bárány, Katchalski & Pach (1982) - Steinitz, E. (1914), "Bedingt konvergente Reihen und konvexe Systeme. (Fortsetzung)", Journal für die Reine und Angewandte Mathematik, 1914 (144): 1–40, doi:10.1515/crll.1914.144.1, MR 1580890, S2CID 122998337 https://doi.org/10.1515%2Fcrll.1914.144.1
Grünbaum (2003), p. 16; Lay (1982), p. 21; Sakuma (1977). - Grünbaum, Branko (2003), Convex Polytopes, Graduate Texts in Mathematics, vol. 221 (2nd ed.), Springer, ISBN 9780387004242
This example is given by Talman (1977), Remark 2.6. - Talman, Louis A. (1977), "Fixed points for condensing multifunctions in metric spaces with convex structure", Kōdai Mathematical Seminar Reports, 29 (1–2): 62–70, MR 0463985 https://projecteuclid.org/euclid.kmj/1138833572
Whitley (1986). - Whitley, Robert (1986), "The Kreĭn-Šmulian theorem", Proceedings of the American Mathematical Society, 97 (2): 376–377, doi:10.2307/2046536, JSTOR 2046536, MR 0835903 https://doi.org/10.2307%2F2046536
Krein & Milman (1940); Lay (1982), p. 43. - Krein, Mark; Milman, David (1940), "On extreme points of regular convex sets", Studia Mathematica, 9: 133–138, doi:10.4064/sm-9-1-133-138 https://eudml.org/doc/219061
Okon (2000). - Okon, T. (2000), "Choquet theory in metric spaces", Zeitschrift für Analysis und ihre Anwendungen, 19 (2): 303–314, doi:10.4171/ZAA/952, MR 1768994 https://doi.org/10.4171%2FZAA%2F952
Kiselman (2002). - Kiselman, Christer O. (2002), "A semigroup of operators in convexity theory", Transactions of the American Mathematical Society, 354 (5): 2035–2053, doi:10.1090/S0002-9947-02-02915-X, MR 1881029 https://doi.org/10.1090%2FS0002-9947-02-02915-X
Kashiwabara, Nakamura & Okamoto (2005). - Kashiwabara, Kenji; Nakamura, Masataka; Okamoto, Yoshio (2005), "The affine representation theorem for abstract convex geometries", Computational Geometry, 30 (2): 129–144, CiteSeerX 10.1.1.14.4965, doi:10.1016/j.comgeo.2004.05.001, MR 2107032 https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.14.4965
Krein & Šmulian (1940), Theorem 3, pages 562–563; Schneider (1993), Theorem 1.1.2 (pages 2–3) and Chapter 3. - Krein, M.; Šmulian, V. (1940), "On regularly convex sets in the space conjugate to a Banach space", Annals of Mathematics, Second Series, 41 (3): 556–583, doi:10.2307/1968735, hdl:10338.dmlcz/100106, JSTOR 1968735, MR 0002009 https://doi.org/10.2307%2F1968735
de Berg et al. (2008), p. 254. - de Berg, M.; van Kreveld, M.; Overmars, Mark; Schwarzkopf, O. (2008), Computational Geometry: Algorithms and Applications (3rd ed.), Springer
de Berg et al. (2008), p. 3. - de Berg, M.; van Kreveld, M.; Overmars, Mark; Schwarzkopf, O. (2008), Computational Geometry: Algorithms and Applications (3rd ed.), Springer
Grünbaum (2003), p. 57. - Grünbaum, Branko (2003), Convex Polytopes, Graduate Texts in Mathematics, vol. 221 (2nd ed.), Springer, ISBN 9780387004242
de Berg et al. (2008), p. 256. - de Berg, M.; van Kreveld, M.; Overmars, Mark; Schwarzkopf, O. (2008), Computational Geometry: Algorithms and Applications (3rd ed.), Springer
de Berg et al. (2008), p. 245. - de Berg, M.; van Kreveld, M.; Overmars, Mark; Schwarzkopf, O. (2008), Computational Geometry: Algorithms and Applications (3rd ed.), Springer
Rappoport (1992). - Rappoport, Ari (1992), "An efficient adaptive algorithm for constructing the convex differences tree of a simple polygon", Computer Graphics Forum, 11 (4): 235–240, doi:10.1111/1467-8659.1140235, S2CID 20137707 https://doi.org/10.1111%2F1467-8659.1140235
Demaine et al. (2008). - Demaine, Erik D.; Gassend, Blaise; O'Rourke, Joseph; Toussaint, Godfried T. (2008), "All polygons flip finitely ... right?", Surveys on Discrete and Computational Geometry, Contemporary Mathematics, vol. 453, Providence, Rhode Island: American Mathematical Society, pp. 231–255, doi:10.1090/conm/453/08801, ISBN 978-0-8218-4239-3, MR 2405683 https://doi.org/10.1090%2Fconm%2F453%2F08801
Cranston, Hsu & March (1989). - Cranston, M.; Hsu, P.; March, P. (1989), "Smoothness of the convex hull of planar Brownian motion", Annals of Probability, 17 (1): 144–150, doi:10.1214/aop/1176991500, JSTOR 2244202, MR 0972777 https://doi.org/10.1214%2Faop%2F1176991500
Sedykh (1981). - Sedykh, V. D. (1981), "Structure of the convex hull of a space curve", Trudy Seminara imeni I. G. Petrovskogo (6): 239–256, MR 0630708 https://mathscinet.ams.org/mathscinet-getitem?mr=0630708
Dirnböck & Stachel (1997). - Dirnböck, Hans; Stachel, Hellmuth (1997), "The development of the oloid" (PDF), Journal for Geometry and Graphics, 1 (2): 105–118, MR 1622664 http://www.heldermann-verlag.de/jgg/jgg01_05/jgg0113.pdf
Seaton (2017). - Seaton, Katherine A. (2017), "Sphericons and D-forms: a crocheted connection", Journal of Mathematics and the Arts, 11 (4): 187–202, arXiv:1603.08409, doi:10.1080/17513472.2017.1318512, MR 3765242, S2CID 84179479 https://arxiv.org/abs/1603.08409
Rockafellar (1970), p. 36. - Rockafellar, R. Tyrrell (1970), Convex Analysis, Princeton Mathematical Series, vol. 28, Princeton, N.J.: Princeton University Press, MR 0274683 https://mathscinet.ams.org/mathscinet-getitem?mr=0274683
Rockafellar (1970), p. 149. - Rockafellar, R. Tyrrell (1970), Convex Analysis, Princeton Mathematical Series, vol. 28, Princeton, N.J.: Princeton University Press, MR 0274683 https://mathscinet.ams.org/mathscinet-getitem?mr=0274683
Avis, Bremner & Seidel (1997). - Avis, David; Bremner, David; Seidel, Raimund (1997), "How good are convex hull algorithms?", Computational Geometry, 7 (5–6): 265–301, doi:10.1016/S0925-7721(96)00023-5, MR 1447243 https://doi.org/10.1016%2FS0925-7721%2896%2900023-5
de Berg et al. (2008), p. 3. - de Berg, M.; van Kreveld, M.; Overmars, Mark; Schwarzkopf, O. (2008), Computational Geometry: Algorithms and Applications (3rd ed.), Springer
de Berg et al. (2008), p. 13. - de Berg, M.; van Kreveld, M.; Overmars, Mark; Schwarzkopf, O. (2008), Computational Geometry: Algorithms and Applications (3rd ed.), Springer
Chazelle (1993); de Berg et al. (2008), p. 256. - Chazelle, Bernard (1993), "An optimal convex hull algorithm in any fixed dimension" (PDF), Discrete & Computational Geometry, 10 (1): 377–409, CiteSeerX 10.1.1.113.8709, doi:10.1007/BF02573985, S2CID 26605267 https://www.cs.princeton.edu/~chazelle/pubs/ConvexHullAlgorithm.pdf
McCallum & Avis (1979); Graham & Yao (1983); Lee (1983). - McCallum, Duncan; Avis, David (1979), "A linear algorithm for finding the convex hull of a simple polygon", Information Processing Letters, 9 (5): 201–206, doi:10.1016/0020-0190(79)90069-3, MR 0552534 https://doi.org/10.1016%2F0020-0190%2879%2990069-3
Chan (2012). - Chan, Timothy M. (2012), "Three problems about dynamic convex hulls", International Journal of Computational Geometry and Applications, 22 (4): 341–364, doi:10.1142/S0218195912600096, MR 2994585 https://doi.org/10.1142%2FS0218195912600096
Basch, Guibas & Hershberger (1999). - Basch, Julien; Guibas, Leonidas J.; Hershberger, John (1999), "Data structures for mobile data", Journal of Algorithms, 31 (1): 1–28, CiteSeerX 10.1.1.134.6921, doi:10.1006/jagm.1998.0988, MR 1670903, S2CID 8013433 https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.134.6921
Toussaint (1983). - Toussaint, Godfried (1983), "Solving geometric problems with the rotating calipers", Proceedings of IEEE MELECON '83, Athens, CiteSeerX 10.1.1.155.5671 https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.155.5671
Westermann (1976). - Westermann, L. R. J. (1976), "On the hull operator", Indagationes Mathematicae, 38 (2): 179–184, doi:10.1016/1385-7258(76)90065-2, MR 0404097 https://doi.org/10.1016%2F1385-7258%2876%2990065-2
Westermann (1976). - Westermann, L. R. J. (1976), "On the hull operator", Indagationes Mathematicae, 38 (2): 179–184, doi:10.1016/1385-7258(76)90065-2, MR 0404097 https://doi.org/10.1016%2F1385-7258%2876%2990065-2
Westermann (1976). - Westermann, L. R. J. (1976), "On the hull operator", Indagationes Mathematicae, 38 (2): 179–184, doi:10.1016/1385-7258(76)90065-2, MR 0404097 https://doi.org/10.1016%2F1385-7258%2876%2990065-2
Laurentini (1994). - Laurentini, A. (1994), "The visual hull concept for silhouette-based image understanding", IEEE Transactions on Pattern Analysis and Machine Intelligence, 16 (2): 150–162, doi:10.1109/34.273735 https://doi.org/10.1109%2F34.273735
Edelsbrunner, Kirkpatrick & Seidel (1983). - Edelsbrunner, Herbert; Kirkpatrick, David G.; Seidel, Raimund (1983), "On the shape of a set of points in the plane", IEEE Transactions on Information Theory, 29 (4): 551–559, doi:10.1109/TIT.1983.1056714 https://doi.org/10.1109%2FTIT.1983.1056714
Toussaint (1986). - Toussaint, Godfried (1986), "An optimal algorithm for computing the relative convex hull of a set of points in a polygon", Proceedings of EURASIP, Signal Processing III: Theories and Applications, Part 2, North-Holland, pp. 853–856
Ottmann, Soisalon-Soininen & Wood (1984). - Ottmann, T.; Soisalon-Soininen, E.; Wood, Derick (1984), "On the definition and computation of rectilinear convex hulls", Information Sciences, 33 (3): 157–171, doi:10.1016/0020-0255(84)90025-2 https://doi.org/10.1016%2F0020-0255%2884%2990025-2
Herrlich (1992). - Herrlich, Horst (1992), "Hyperconvex hulls of metric spaces", Proceedings of the Symposium on General Topology and Applications (Oxford, 1989), Topology and Its Applications, 44 (1–3): 181–187, doi:10.1016/0166-8641(92)90092-E, MR 1173256 https://doi.org/10.1016%2F0166-8641%2892%2990092-E
Rossi (1961). - Rossi, Hugo (1961), "Holomorphically convex sets in several complex variables", Annals of Mathematics, Second Series, 74 (3): 470–493, doi:10.2307/1970292, JSTOR 1970292, MR 0133479 https://doi.org/10.2307%2F1970292
Brown (1979). - Brown, K. Q. (1979), "Voronoi diagrams from convex hulls", Information Processing Letters, 9 (5): 223–228, doi:10.1016/0020-0190(79)90074-7, S2CID 44537056 https://doi.org/10.1016%2F0020-0190%2879%2990074-7
Edelsbrunner, Kirkpatrick & Seidel (1983). - Edelsbrunner, Herbert; Kirkpatrick, David G.; Seidel, Raimund (1983), "On the shape of a set of points in the plane", IEEE Transactions on Information Theory, 29 (4): 551–559, doi:10.1109/TIT.1983.1056714 https://doi.org/10.1109%2FTIT.1983.1056714
Chazelle (1985). - Chazelle, Bernard (1985), "On the convex layers of a planar set", IEEE Transactions on Information Theory, 31 (4): 509–517, doi:10.1109/TIT.1985.1057060, MR 0798557 https://doi.org/10.1109%2FTIT.1985.1057060
Chang & Yap (1986). - Chang, J. S.; Yap, C.-K. (1986), "A polynomial solution for the potato-peeling problem", Discrete & Computational Geometry, 1 (2): 155–182, doi:10.1007/BF02187692, MR 0834056 https://doi.org/10.1007%2FBF02187692
Artin (1967); Gel'fand, Kapranov & Zelevinsky (1994) - Artin, Emil (1967), "2.5. Newton's Polygon", Algebraic Numbers and Algebraic Functions, Gordon and Breach, pp. 37–43, MR 0237460 https://books.google.com/books?id=VixOGTdZaCQC&pg=PA37
Prasolov (2004). - Prasolov, Victor V. (2004), "1.2.1 The Gauss–Lucas theorem", Polynomials, Algorithms and Computation in Mathematics, vol. 11, Springer, pp. 12–13, doi:10.1007/978-3-642-03980-5, ISBN 3-540-40714-6, MR 2082772 https://books.google.com/books?id=b1a7ye_EjZwC&pg=PA12
Johnson (1976). - Johnson, Charles R. (1976), "Normality and the numerical range", Linear Algebra and Its Applications, 15 (1): 89–94, doi:10.1016/0024-3795(76)90080-x, MR 0460358 https://doi.org/10.1016%2F0024-3795%2876%2990080-x
Gardner (1984). - Gardner, L. Terrell (1984), "An elementary proof of the Russo-Dye theorem", Proceedings of the American Mathematical Society, 90 (1): 171, doi:10.2307/2044692, JSTOR 2044692, MR 0722439, S2CID 119501393 https://doi.org/10.2307%2F2044692
Reay (1979). - Reay, John R. (1979), "Several generalizations of Tverberg's theorem", Israel Journal of Mathematics, 34 (3): 238–244 (1980), doi:10.1007/BF02760885, MR 0570883, S2CID 121352925 https://doi.org/10.1007%2FBF02760885
Epstein & Marden (1987). - Epstein, D. B. A.; Marden, A. (1987), "Convex hulls in hyperbolic space, a theorem of Sullivan, and measured pleated surfaces", in Epstein, D. B. A. (ed.), Analytical and geometric aspects of hyperbolic space (Coventry/Durham, 1984), London Mathematical Society Lecture Note Series, vol. 111, Cambridge: Cambridge University Press, pp. 113–253, MR 0903852 https://mathscinet.ams.org/mathscinet-getitem?mr=0903852
Weeks (1993). - Weeks, Jeffrey R. (1993), "Convex hulls and isometries of cusped hyperbolic 3-manifolds", Topology and Its Applications, 52 (2): 127–149, doi:10.1016/0166-8641(93)90032-9, MR 1241189 https://doi.org/10.1016%2F0166-8641%2893%2990032-9
Rousseeuw, Ruts & Tukey (1999). - Rousseeuw, Peter J.; Ruts, Ida; Tukey, John W. (1999), "The bagplot: A bivariate boxplot", The American Statistician, 53 (4): 382–387, doi:10.1080/00031305.1999.10474494 https://doi.org/10.1080%2F00031305.1999.10474494
Harris (1971). - Harris, Bernard (1971), "Mathematical models for statistical decision theory" (PDF), Optimizing methods in statistics (Proc. Sympos., Ohio State Univ., Columbus, Ohio, 1971), pp. 369–389, MR 0356305, archived from the original (PDF) on 2021-02-28, retrieved 2020-01-01 https://web.archive.org/web/20210228072623/https://apps.dtic.mil/dtic/tr/fulltext/u2/737250.pdf
Pulleyblank (1983); see especially remarks following Theorem 2.9. - Pulleyblank, W. R. (1983), "Polyhedral combinatorics", in Bachem, Achim; Korte, Bernhard; Grötschel, Martin (eds.), Mathematical Programming: The State of the Art (XIth International Symposium on Mathematical Programming, Bonn 1982), Springer, pp. 312–345, doi:10.1007/978-3-642-68874-4_13, ISBN 978-3-642-68876-8 https://doi.org/10.1007%2F978-3-642-68874-4_13
Katoh (1992). - Katoh, Naoki (1992), "Bicriteria network optimization problems", IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, E75-A: 321–329
Nicola (2000). See in particular Section 16.9, Non Convexity and Approximate Equilibrium, pp. 209–210. - Nicola, Piercarlo (2000), "General Competitive Equilibrium", Mainstream Mathematical Economics in the 20th Century, Springer, pp. 197–215, doi:10.1007/978-3-662-04238-0_16, ISBN 978-3-642-08638-0 https://doi.org/10.1007%2F978-3-662-04238-0_16
Chen & Wang (2003). - Chen, Qinyu; Wang, Guozhao (March 2003), "A class of Bézier-like curves", Computer Aided Geometric Design, 20 (1): 29–39, doi:10.1016/s0167-8396(03)00003-7 https://doi.org/10.1016%2Fs0167-8396%2803%2900003-7
Mason (1908). - Mason, Herbert B. (1908), Encyclopaedia of Ships and Shipping, p. 698 https://books.google.com/books?id=d3gDAAAAYAAJ&pg=PA698
Kernohan, Gitzen & Millspaugh (2001), p. 137–140; Nilsen, Pedersen & Linnell (2008) - Kernohan, Brian J.; Gitzen, Robert A.; Millspaugh, Joshua J. (2001), "Analysis of animal space use and movements", in Millspaugh, Joshua; Marzluff, John M. (eds.), Radio Tracking and Animal Populations, Academic Press, ISBN 9780080540221
Worton (1995). - Worton, Bruce J. (1995), "A convex hull-based estimator of home-range size", Biometrics, 51 (4): 1206–1215, doi:10.2307/2533254, JSTOR 2533254 https://doi.org/10.2307%2F2533254
Getz & Wilmers (2004). - Getz, Wayne M.; Wilmers, Christopher C. (2004), "A local nearest-neighbor convex-hull construction of home ranges and utilization distributions" (PDF), Ecography, 27 (4), Wiley: 489–505, Bibcode:2004Ecogr..27..489G, doi:10.1111/j.0906-7590.2004.03835.x, S2CID 14592779 https://www.cnr.berkeley.edu/~getz/Reprints04/Getz&WilmersEcoG_SF_04.pdf
Rieffel & Polak (2011). - Rieffel, Eleanor G.; Polak, Wolfgang H. (2011), Quantum Computing: A Gentle Introduction, MIT Press, pp. 215–216, ISBN 978-0-262-01506-6
Kirkpatrick (2006). - Kirkpatrick, K. A. (2006), "The Schrödinger–HJW theorem", Foundations of Physics Letters, 19 (1): 95–102, arXiv:quant-ph/0305068, Bibcode:2006FoPhL..19...95K, doi:10.1007/s10702-006-1852-1, S2CID 15995449 https://arxiv.org/abs/quant-ph/0305068
Gibbs (1873). - Gibbs, Willard J. (1873), "A method of geometrical representation of the thermodynamic properties of substances by means of surfaces", Transactions of the Connecticut Academy of Arts and Sciences, 2: 382–404
Hautier (2014); Fultz (2020) - Hautier, Geoffroy (2014), "Data mining approaches to high-throughput crystal structure and compound prediction", in Atahan-Evrenk, Sule; Aspuru-Guzik, Alan (eds.), Prediction and Calculation of Crystal Structures: Methods and Applications, Topics in Current Chemistry, vol. 345, Springer International Publishing, pp. 139–179, doi:10.1007/128_2013_486, ISBN 978-3-319-05773-6, PMID 24287952 https://doi.org/10.1007%2F128_2013_486
Newton (1676); see Auel (2019), page 336, and Escobar & Kaveh (2020). - Newton, Isaac (October 24, 1676), "Letter to Henry Oldenburg", The Newton Project, University of Oxford https://www.newtonproject.ox.ac.uk/view/texts/normalized/NATP00196
See, e.g., White (1923), page 520. - White, F. Puryer (April 1923), "Pure mathematics", Science Progress in the Twentieth Century, 17 (68): 517–526, JSTOR 43432008 https://www.jstor.org/stable/43432008
Dines (1938). - Dines, L. L. (1938), "On convexity", American Mathematical Monthly, 45 (4): 199–209, doi:10.2307/2302604, JSTOR 2302604, MR 1524247 https://doi.org/10.2307%2F2302604