In 2012, the pale green gallium monoiodide was determined to be a combination of gallium metal and gallium(I,III) iodide, having the chemical composition [Ga0]2[Ga+][GaI4−]. However, in 2014, it was found that the incomplete reaction of gallium metal with iodine yielded gallium monoiodide with this chemical composition. Gallium monoiodide synthesized with longer reaction times for complete reaction had a different chemical composition [Ga0]2[Ga+]2[Ga2I62-].
The resultant gallium monoiodide is highly air sensitive, but stable under inert atmosphere conditions for up to a year at -35 ˚C.
When gallium monoiodide was first produced, it was proposed that gallium monoiodide is a combination of gallium metal, Ga2I3 and Ga2I4 based on the characteristic Raman spectra of these constituents.
This hypothesis was confirmed as two variants of gallium monoiodide were determined to have the chemical compositions [Ga0]2[Ga+][GaI4−], simplified as Ga2I4·2Ga, and [Ga0]2[Ga+]2[Ga2I62-], simplified as Ga2I3·Ga.
When the completely reacted product was probed by 127I NQR, it showed the presence of Ga2I3. Raman spectroscopy has also confirmed this assignment, as it aligned with those from a Ga4I6 reference. Finally, power x-ray diffraction supports that this gallium monoiodide variant matches that of characteristic Ga2I3, which is different from that of GaI2.
[Ga0]2[Ga+][GaI4−] converts to [Ga0]2[Ga+]2[Ga2I62-] over time.
Gallium monoiodide is used as a precursor for a variety of reactions, acting as a lewis acid and a reducing agent. Early-on, gallium monoiodide was shown to produce alkylgallium diiodides via oxidative addition by reacting liquid gallium metal and iodine in the presence of an alkyl iodide. Since then, other organogallium complexes have been synthesized, as well as Lewis base adducts and gallium based clusters.
Gallium monoiodide can also be used as a precursor to form gallium-based heterocycles. Reactions with diazabutadienes, {RN=C(H)}2, forms monomers or dimers based on the substituents on the diazabutadienes. More sterically hindered substituents such as tert-butyl have resulted in the formation of gallium(II) dimers, whereas reactions with alkyl or aryl substituted diazabutadienes have formed Ga(III) monomers. Gallium monoiodide can be reacted with phenyl-substituted 1,4-diazabuta-1,3-dienes to form a gallium heterocycle with a diazabutadiene monoanion. EPR spectroscopy has revealed that the diazabutadiene fragment is a paramagnetic monoanionic species rather than an ene-diamido dianion or a neutral ligand. Thus, gallium monoiodide undergoes a disproportionation reaction to form a gallium(III) complex with deposition of a gallium metal. Upon further reaction with a 1,4-dilithiated diazabutadiene, this gallium heterocycle forms a new complex with the diazabutadiene monoanion fragment datively bonded to the gallium center and an ene-diamido dianion covalently bonded to the Ga center.
One very important reactivity of this gallium(III) heterocycle is its ability to access gallium analogues of N-heterocyclic carbenes upon reduction with potassium metal. Although a gallium analogue of N-heterocyclic carbenes had been synthesized previously, having access to heavier analogues of N-heterocylic carbenes from a synthetically more facile gallium monoiodide route has opened new avenues in coordination chemistry, such as access to new Ga-M bonds.
Gallium monoiodide can also be used to access six-membered gallium(I) heterocycles that have parallels to gallium analogues of N-heterocyclic carbenes. These neutral gallium(I) heterocycles can be synthesized by reacting gallium monoiodide and Li[nacnac].
Gallium monoiodide can easily be converted to half-sandwich complexes, (pentamethylcyclopentadienyl)gallium(I) and cyclopentadienylgallium. (Pentamethylcyclopentadienyl)gallium(I) can be easily produced by reacting gallium monoiodide with a potassium salt of the desired ligand under toluene to avoid side products.
Cyclopentadienylgallium, which is less sterically hindered than (pentamethylcyclopentadienyl)gallium(I), can also be accessed using a gallium monoiodide. This ligand can be synthesized with a metathesis reaction of NaCp with gallium monoiodide. This cyclopentadienylgallium ligand has been used to access a GaCp2I complex with datively bonded cyclopentadienylgallium. This complex showcases an uncommon donor-acceptor Ga-Ga bond. Cyclopentadienylgallium can also be used to access a Lewis acid B(C6F5)3 complex with a datively bonded cyclopentadienylgallium ligand. For both of these two complexes, the (pentamethylcyclopentadienyl)gallium(I) analogues have been synthesized and x-ray crystallography has supported that, as expected, (pentamethylcyclopentadienyl)gallium(I) is a slightly stronger donor than cyclopentadienylgallium.
Like (pentamethylcyclopentadienyl)gallium(I), cyclopentadienylgallium can also coordinate to transition metal complexes such as Cr(CO)5(cyclooctene) or Co2(CO)8 to yield CpGa–Cr(CO)5 or (thf)GaCp{Co(CO)4}2. For CpGa–Cr(CO)5, the Ga-Cr bond length (239.6 pm) is similar to that for a (pentamethylcyclopentadienyl)gallium(I) analogue (240.5 pm). For this complex, the trans effect is also observed, where the Cr-CO bond trans to the cyclopentadienylgallium ligand is contracted (186 pm) relative to the cis Cr-CO bonds (189.5 pm). While cyclopentadienylgallium can act as a terminal ligand similar to (pentamethylcyclopentadienyl)gallium(I), it was determined that cyclopentadienylgallium analogues react faster than their (pentamethylcyclopentadienyl)gallium(I) counterparts. This can be attributed to the lower steric bulk of cyclopentadienylgallium.
Unlike reactivity with Cr(CO)5(cyclooctene), reactivities of (pentamethylcyclopentadienyl)gallium(I) and cyclopentadienylgallium with Co2(CO)8 diverge significantly. Dicobalt octacarbonyl, or Co2(CO)8, exists in various isomeric states. One such isomer contains two bridging CO ligands. When (pentamethylcyclopentadienyl)gallium(I) reacts with Co2(CO)8, two equivalents of CO gas are released, forming (CO)3Co[μ2-(η5-GaCp*)]2-Co(CO)3. This is a derivative of the dicobalt octacarbonyl complex where the bridging CO moieties are replaced by bridging (pentamethylcyclopentadienyl)gallium(I) moieties. On the other hand, cyclopentadienylgallium enables oxidative addition to Co2(CO)8 to form (thf)GaCp{Co(CO)4}2, where gallium has sigma interactions to two Co(CO)4 units. The average Ga–Co bond length is 248.5 pm and gallium is in a formally +3 oxidation state in this new complex. Overall, straightforward synthesis of cyclopentadienylgallium from a gallium monoiodide precursor has many merits in expanding the scope of transition metal chemistry with lower valent species.
A variety of gallium clusters have also been synthesized from gallium monoiodide. These clusters have often been isolated as salts with bulky silyl or germyl anions, such as [Si(SiMe3)3]−. An example of an isolated gallium cluster is [Ga9{Si(SiMe3)3}6]−, which has a pentagonal bipyramidal polyhedral structure. It is synthesized by reacting gallium monoiodide with Li(thf)3Si(SiMe3)3 in toluene at -78 ˚C. This reaction has been shown to access a wide array of products, which may be attributed to the wide range of gallium monoiodide compositions that have been subsequently probed. Of these products, [Ga9{Si(SiMe3)3}6]− is especially unique because Ga was found to have a very low average oxidation state (0.56) and also because this cluster has fewer R substituents than polyhedron vertices. Other clusters that been isolated via similar reaction pathways include [Ga10{Si(SiMe3)3}6], which is a conjuncto-polyhedral cluster, and a closo-silatetragallane anion, which contains three 2-electron-2-center and three 2-electron-3-center bonds. Interestingly, this latter species can only be synthesized when sub-stoichiometric quantities of I2 are utilized to access a "Ga2I3" intermediate species. This is equivalent to reacting liquid gallium metal and iodine to pre-completion, which, as explained above, accesses the [Ga0]2[Ga+]2[Ga2I62-] variant of gallium monoiodide. This highlights the versatility of the gallium monoiodide precursor in accessing a wide range of gallium-based complexes.
Gallium monoiodide can also form cluster-type compounds with transition metals precursors. One example is the reaction between gallium monoiodide and (2,6-Pmp2C6H3)2Co, (Pmp = C6Me5), which yields a nido-type cluster. This molecule is structurally similar to cubane, where the corners are metal and bridging iodine atoms, with one corner removed. This is a particularly unique Co-GaI cluster due to its unusual geometry for transition metal compounds containing heavy group 13 atoms such as gallium. The bond critical points and bond paths, as computed with QTAIM analysis, support that while there are Co-Ga bonds, there are no Ga-Ga bonds.
Finally, gallium monoiodide has been able to form clusters with heavy gold atoms by acting as a reducing reagent when combined with (pentamethylcyclopentadienyl)gallium(I) and triphenylphosphine-gold complexes(i.e. AuI(PPh3) or AuCl(PPh3)). This cluster contained the first crystallographically confirmed Ga-Au bonds, consisting of a Au3 cluster ligated by Ga ligands. In addition, NBO analysis showed that the charge on the galliums within the (pentamethylcyclopentadienyl)gallium(I) ligands were much higher than the charge on the Au atoms and the charge on the gallium atoms within the GaI2 motifs. This suggests that non-bridging Ga-Au bonds are highly polarized, whereas the μ-bridging Ga-Au bonds are more non-polar covalent in character.
Dohmeier, Carsten; Loos, Dagmar; Schnöckel, Hansgeorg (1996). "Aluminum(I) and Gallium(I) Compounds: Syntheses, Structures, and Reactions". Angewandte Chemie International Edition in English. 35 (2): 129–149. doi:10.1002/anie.199601291. ISSN 1521-3773. https://onlinelibrary.wiley.com/doi/abs/10.1002/anie.199601291
Green, Malcolm L. H.; Mountford, Philip; Smout, Geoffrey J.; Speel, S. Robert (1990-01-01). "New synthetic pathways into the organometallic chemistry of gallium". Polyhedron. 9 (22): 2763–2765. doi:10.1016/S0277-5387(00)86809-6. ISSN 0277-5387.Schenk, Christian; Köppe, Ralf; Schnöckel, Hansgeorg; Schnepf, Andreas (2011). "A Convenient Synthesis of Cyclopentadienylgallium – The Awakening of a Sleeping Beauty in Organometallic Chemistry". European Journal of Inorganic Chemistry. 2011 (25): 3681–3685. doi:10.1002/ejic.201100672. ISSN 1099-0682. http://www.sciencedirect.com/science/article/pii/S0277538700868096
Widdifield, Cory M.; Jurca, Titel; Richeson, Darrin S.; Bryce, David L. (2012-03-16). "Using 69/71Ga solid-state NMR and 127I NQR as probes to elucidate the composition of "GaI"". Polyhedron. 35 (1): 96–100. doi:10.1016/j.poly.2012.01.003. ISSN 0277-5387. http://www.sciencedirect.com/science/article/pii/S0277538712000101
Malbrecht, Brian J.; Dube, Jonathan W.; Willans, Mathew J.; Ragogna, Paul J. (2014-09-15). "Addressing the Chemical Sorcery of "GaI": Benefits of Solid-State Analysis Aiding in the Synthesis of P→Ga Coordination Compounds". Inorganic Chemistry. 53 (18): 9644–9656. doi:10.1021/ic501139w. ISSN 0020-1669. PMID 25184621. https://doi.org/10.1021/ic501139w
Malbrecht, Brian J.; Dube, Jonathan W.; Willans, Mathew J.; Ragogna, Paul J. (2014-09-15). "Addressing the Chemical Sorcery of "GaI": Benefits of Solid-State Analysis Aiding in the Synthesis of P→Ga Coordination Compounds". Inorganic Chemistry. 53 (18): 9644–9656. doi:10.1021/ic501139w. ISSN 0020-1669. PMID 25184621. https://doi.org/10.1021/ic501139w
Wilkinson, M.; Worrall, I. J. (1975-07-01). "Synthesis of alkylgallium diiodides". Journal of Organometallic Chemistry. 93 (1): 39–42. doi:10.1016/S0022-328X(00)94142-1. ISSN 0022-328X. http://www.sciencedirect.com/science/article/pii/S0022328X00941421
Malbrecht, Brian J.; Dube, Jonathan W.; Willans, Mathew J.; Ragogna, Paul J. (2014-09-15). "Addressing the Chemical Sorcery of "GaI": Benefits of Solid-State Analysis Aiding in the Synthesis of P→Ga Coordination Compounds". Inorganic Chemistry. 53 (18): 9644–9656. doi:10.1021/ic501139w. ISSN 0020-1669. PMID 25184621. https://doi.org/10.1021/ic501139w
Widdifield, Cory M.; Jurca, Titel; Richeson, Darrin S.; Bryce, David L. (2012-03-16). "Using 69/71Ga solid-state NMR and 127I NQR as probes to elucidate the composition of "GaI"". Polyhedron. 35 (1): 96–100. doi:10.1016/j.poly.2012.01.003. ISSN 0277-5387. http://www.sciencedirect.com/science/article/pii/S0277538712000101
Widdifield, Cory M.; Jurca, Titel; Richeson, Darrin S.; Bryce, David L. (2012-03-16). "Using 69/71Ga solid-state NMR and 127I NQR as probes to elucidate the composition of "GaI"". Polyhedron. 35 (1): 96–100. doi:10.1016/j.poly.2012.01.003. ISSN 0277-5387. http://www.sciencedirect.com/science/article/pii/S0277538712000101
Malbrecht, Brian J.; Dube, Jonathan W.; Willans, Mathew J.; Ragogna, Paul J. (2014-09-15). "Addressing the Chemical Sorcery of "GaI": Benefits of Solid-State Analysis Aiding in the Synthesis of P→Ga Coordination Compounds". Inorganic Chemistry. 53 (18): 9644–9656. doi:10.1021/ic501139w. ISSN 0020-1669. PMID 25184621. https://doi.org/10.1021/ic501139w
Okuda, Tsutomu; Hamamoto, Hiroshi; Ishihara, Hideta; Negita, Hisao (1985-09-01). "79Br and 127I Nuclear Quadrupole Resonance of Mixed Valency Compounds Ga2X4(X=Br, I)". Bulletin of the Chemical Society of Japan. 58 (9): 2731–2732. doi:10.1246/bcsj.58.2731. ISSN 0009-2673. https://doi.org/10.1246%2Fbcsj.58.2731
Malbrecht, Brian J.; Dube, Jonathan W.; Willans, Mathew J.; Ragogna, Paul J. (2014-09-15). "Addressing the Chemical Sorcery of "GaI": Benefits of Solid-State Analysis Aiding in the Synthesis of P→Ga Coordination Compounds". Inorganic Chemistry. 53 (18): 9644–9656. doi:10.1021/ic501139w. ISSN 0020-1669. PMID 25184621. https://doi.org/10.1021/ic501139w
Beamish, J. C.; Wilkinson, M.; Worrall, I. J. (1978-07-01). "Facile synthesis of the lower valent halides of gallium, Ga2X4 (X = chloride, bromide, iodide) and tetragallium hexaiodide". Inorganic Chemistry. 17 (7): 2026–2027. doi:10.1021/ic50185a069. ISSN 0020-1669. https://doi.org/10.1021/ic50185a069
Malbrecht, Brian J.; Dube, Jonathan W.; Willans, Mathew J.; Ragogna, Paul J. (2014-09-15). "Addressing the Chemical Sorcery of "GaI": Benefits of Solid-State Analysis Aiding in the Synthesis of P→Ga Coordination Compounds". Inorganic Chemistry. 53 (18): 9644–9656. doi:10.1021/ic501139w. ISSN 0020-1669. PMID 25184621. https://doi.org/10.1021/ic501139w
Malbrecht, Brian J.; Dube, Jonathan W.; Willans, Mathew J.; Ragogna, Paul J. (2014-09-15). "Addressing the Chemical Sorcery of "GaI": Benefits of Solid-State Analysis Aiding in the Synthesis of P→Ga Coordination Compounds". Inorganic Chemistry. 53 (18): 9644–9656. doi:10.1021/ic501139w. ISSN 0020-1669. PMID 25184621. https://doi.org/10.1021/ic501139w
Beamish, J. C.; Wilkinson, M.; Worrall, I. J. (1978-07-01). "Facile synthesis of the lower valent halides of gallium, Ga2X4 (X = chloride, bromide, iodide) and tetragallium hexaiodide". Inorganic Chemistry. 17 (7): 2026–2027. doi:10.1021/ic50185a069. ISSN 0020-1669. https://doi.org/10.1021/ic50185a069
Malbrecht, Brian J.; Dube, Jonathan W.; Willans, Mathew J.; Ragogna, Paul J. (2014-09-15). "Addressing the Chemical Sorcery of "GaI": Benefits of Solid-State Analysis Aiding in the Synthesis of P→Ga Coordination Compounds". Inorganic Chemistry. 53 (18): 9644–9656. doi:10.1021/ic501139w. ISSN 0020-1669. PMID 25184621. https://doi.org/10.1021/ic501139w
Malbrecht, Brian J.; Dube, Jonathan W.; Willans, Mathew J.; Ragogna, Paul J. (2014-09-15). "Addressing the Chemical Sorcery of "GaI": Benefits of Solid-State Analysis Aiding in the Synthesis of P→Ga Coordination Compounds". Inorganic Chemistry. 53 (18): 9644–9656. doi:10.1021/ic501139w. ISSN 0020-1669. PMID 25184621. https://doi.org/10.1021/ic501139w
Dohmeier, Carsten; Loos, Dagmar; Schnöckel, Hansgeorg (1996). "Aluminum(I) and Gallium(I) Compounds: Syntheses, Structures, and Reactions". Angewandte Chemie International Edition in English. 35 (2): 129–149. doi:10.1002/anie.199601291. ISSN 1521-3773. https://onlinelibrary.wiley.com/doi/abs/10.1002/anie.199601291
Green, Malcolm L. H.; Mountford, Philip; Smout, Geoffrey J.; Speel, S. Robert (1990-01-01). "New synthetic pathways into the organometallic chemistry of gallium". Polyhedron. 9 (22): 2763–2765. doi:10.1016/S0277-5387(00)86809-6. ISSN 0277-5387.Schenk, Christian; Köppe, Ralf; Schnöckel, Hansgeorg; Schnepf, Andreas (2011). "A Convenient Synthesis of Cyclopentadienylgallium – The Awakening of a Sleeping Beauty in Organometallic Chemistry". European Journal of Inorganic Chemistry. 2011 (25): 3681–3685. doi:10.1002/ejic.201100672. ISSN 1099-0682. http://www.sciencedirect.com/science/article/pii/S0277538700868096
Baker, Robert J.; Jones, Cameron (2005-04-11). ""GaI": A versatile reagent for the synthetic chemist". Dalton Transactions (8): 1341–1348. doi:10.1039/B501310K. hdl:2262/69572. ISSN 1477-9234. PMID 15824768. https://pubs.rsc.org/en/content/articlelanding/2005/dt/b501310k
Baker, Robert J.; Jones, Cameron (2005-04-11). ""GaI": A versatile reagent for the synthetic chemist". Dalton Transactions (8): 1341–1348. doi:10.1039/B501310K. hdl:2262/69572. ISSN 1477-9234. PMID 15824768. https://pubs.rsc.org/en/content/articlelanding/2005/dt/b501310k
Green, Malcolm L. H.; Mountford, Philip; Smout, Geoffrey J.; Speel, S. Robert (1990-01-01). "New synthetic pathways into the organometallic chemistry of gallium". Polyhedron. 9 (22): 2763–2765. doi:10.1016/S0277-5387(00)86809-6. ISSN 0277-5387.Schenk, Christian; Köppe, Ralf; Schnöckel, Hansgeorg; Schnepf, Andreas (2011). "A Convenient Synthesis of Cyclopentadienylgallium – The Awakening of a Sleeping Beauty in Organometallic Chemistry". European Journal of Inorganic Chemistry. 2011 (25): 3681–3685. doi:10.1002/ejic.201100672. ISSN 1099-0682. http://www.sciencedirect.com/science/article/pii/S0277538700868096
Baker, Robert J.; Jones, Cameron (2005-04-11). ""GaI": A versatile reagent for the synthetic chemist". Dalton Transactions (8): 1341–1348. doi:10.1039/B501310K. hdl:2262/69572. ISSN 1477-9234. PMID 15824768. https://pubs.rsc.org/en/content/articlelanding/2005/dt/b501310k
Schnepf, Andreas; Doriat, Clemens (1997-01-01). "A simple synthesis for donor-stabilized Ga2I4 and Ga3I5 species and the X-ray crystal structure of Ga3I5·3PEt3". Chemical Communications (21): 2111–2112. doi:10.1039/A703776G. ISSN 1364-548X. https://pubs.rsc.org/en/content/articlelanding/1997/cc/a703776g
Green, Malcolm L. H.; Mountford, Philip; Smout, Geoffrey J.; Speel, S. Robert (1990-01-01). "New synthetic pathways into the organometallic chemistry of gallium". Polyhedron. 9 (22): 2763–2765. doi:10.1016/S0277-5387(00)86809-6. ISSN 0277-5387.Schenk, Christian; Köppe, Ralf; Schnöckel, Hansgeorg; Schnepf, Andreas (2011). "A Convenient Synthesis of Cyclopentadienylgallium – The Awakening of a Sleeping Beauty in Organometallic Chemistry". European Journal of Inorganic Chemistry. 2011 (25): 3681–3685. doi:10.1002/ejic.201100672. ISSN 1099-0682. http://www.sciencedirect.com/science/article/pii/S0277538700868096
Baker, Robert J.; Jones, Cameron (2005-04-11). ""GaI": A versatile reagent for the synthetic chemist". Dalton Transactions (8): 1341–1348. doi:10.1039/B501310K. hdl:2262/69572. ISSN 1477-9234. PMID 15824768. https://pubs.rsc.org/en/content/articlelanding/2005/dt/b501310k
Schnepf, Andreas; Doriat, Clemens (1997-01-01). "A simple synthesis for donor-stabilized Ga2I4 and Ga3I5 species and the X-ray crystal structure of Ga3I5·3PEt3". Chemical Communications (21): 2111–2112. doi:10.1039/A703776G. ISSN 1364-548X. https://pubs.rsc.org/en/content/articlelanding/1997/cc/a703776g
Baker, Robert J.; Bettentrup, Helga; Jones, Cameron (2003). "The Reactivity of Primary and Secondary Amines, Secondary Phosphanes and N-Heterocyclic Carbenes towards Group-13 Metal(I) Halides". European Journal of Inorganic Chemistry. 2003 (13): 2446–2451. doi:10.1002/ejic.200300068. ISSN 1099-0682. https://chemistry-europe.onlinelibrary.wiley.com/doi/abs/10.1002/ejic.200300068
Cameron Jones; Christian Schulten; Andreas Stasch (2005-04-01). "[Gal2Ph(SbPh3)]: A Rare Tertiary Stibane-Gallium Complex Formed via a Reductive Sb-C Bond Cleavage Reaction". Main Group Metal Chemistry. 28 (2): 89–92. doi:10.1515/MGMC.2005.28.2.89. ISSN 0792-1241. S2CID 101459028. https://doi.org/10.1515%2FMGMC.2005.28.2.89
Baker, Robert J.; Jones, Cameron (2005-04-11). ""GaI": A versatile reagent for the synthetic chemist". Dalton Transactions (8): 1341–1348. doi:10.1039/B501310K. hdl:2262/69572. ISSN 1477-9234. PMID 15824768. https://pubs.rsc.org/en/content/articlelanding/2005/dt/b501310k
Cameron Jones; Christian Schulten; Andreas Stasch (2005-04-01). "[Gal2Ph(SbPh3)]: A Rare Tertiary Stibane-Gallium Complex Formed via a Reductive Sb-C Bond Cleavage Reaction". Main Group Metal Chemistry. 28 (2): 89–92. doi:10.1515/MGMC.2005.28.2.89. ISSN 0792-1241. S2CID 101459028. https://doi.org/10.1515%2FMGMC.2005.28.2.89
Baker, Robert J.; Bettentrup, Helga; Jones, Cameron (2003). "The Reactivity of Primary and Secondary Amines, Secondary Phosphanes and N-Heterocyclic Carbenes towards Group-13 Metal(I) Halides". European Journal of Inorganic Chemistry. 2003 (13): 2446–2451. doi:10.1002/ejic.200300068. ISSN 1099-0682. https://chemistry-europe.onlinelibrary.wiley.com/doi/abs/10.1002/ejic.200300068
Baker, Robert J.; Jones, Cameron (2005-04-11). ""GaI": A versatile reagent for the synthetic chemist". Dalton Transactions (8): 1341–1348. doi:10.1039/B501310K. hdl:2262/69572. ISSN 1477-9234. PMID 15824768. https://pubs.rsc.org/en/content/articlelanding/2005/dt/b501310k
Baker, Robert J.; Jones, Cameron (2005-04-11). ""GaI": A versatile reagent for the synthetic chemist". Dalton Transactions (8): 1341–1348. doi:10.1039/B501310K. hdl:2262/69572. ISSN 1477-9234. PMID 15824768. https://pubs.rsc.org/en/content/articlelanding/2005/dt/b501310k
Baker, Robert J.; Jones, Cameron (2005-04-11). ""GaI": A versatile reagent for the synthetic chemist". Dalton Transactions (8): 1341–1348. doi:10.1039/B501310K. hdl:2262/69572. ISSN 1477-9234. PMID 15824768. https://pubs.rsc.org/en/content/articlelanding/2005/dt/b501310k
Baker, Robert J.; Jones, Cameron; Kloth, Marc; Mills, David P. (2004-02-03). "The reactivity of gallium(I) and indium(I) halides towards bipyridines, terpyridines, imino-substituted pyridines and bis(imino)acenaphthenes". New Journal of Chemistry. 28 (2): 207–213. doi:10.1039/B310592J. ISSN 1369-9261. https://pubs.rsc.org/en/content/articlelanding/2004/nj/b310592j
Beran, G.; Carty, A. J.; Patel, H. A.; Palenik, Gus J. (1970-01-01). "A trans-effect in gallium complexes: the crystal structure of trichloro-(2,2′,2"-terpyridyl)gallium(III)". Journal of the Chemical Society D: Chemical Communications (4): 222–223. doi:10.1039/C29700000222. ISSN 0577-6171. https://pubs.rsc.org/en/content/articlelanding/1970/c2/c29700000222
Baker, Robert J.; Jones, Cameron; Kloth, Marc; Mills, David P. (2004-02-03). "The reactivity of gallium(I) and indium(I) halides towards bipyridines, terpyridines, imino-substituted pyridines and bis(imino)acenaphthenes". New Journal of Chemistry. 28 (2): 207–213. doi:10.1039/B310592J. ISSN 1369-9261. https://pubs.rsc.org/en/content/articlelanding/2004/nj/b310592j
Baker, Robert J.; Jones, Cameron; Kloth, Marc; Mills, David P. (2004-02-03). "The reactivity of gallium(I) and indium(I) halides towards bipyridines, terpyridines, imino-substituted pyridines and bis(imino)acenaphthenes". New Journal of Chemistry. 28 (2): 207–213. doi:10.1039/B310592J. ISSN 1369-9261. https://pubs.rsc.org/en/content/articlelanding/2004/nj/b310592j
Baker, Robert J.; Jones, Cameron (2005-04-11). ""GaI": A versatile reagent for the synthetic chemist". Dalton Transactions (8): 1341–1348. doi:10.1039/B501310K. hdl:2262/69572. ISSN 1477-9234. PMID 15824768. https://pubs.rsc.org/en/content/articlelanding/2005/dt/b501310k
Pott, Thomas; Jutzi, Peter; Kaim, Wolfgang; Schoeller, Wolfgang W.; Neumann, Beate; Stammler, Anja; Stammler, Hans-Georg; Wanner, Matthias (July 2002). "Reactivity of "GaI" TowardN-Substituted 1,4-Diazabuta-1,3-dienes: Synthesis and Characterization of Gallium Heterocycles Containing Paramagnetic Diazabutadiene Monoanions". Organometallics. 21 (15): 3169–3172. doi:10.1021/om0200510. ISSN 0276-7333. https://pubs.acs.org/doi/pdf/10.1021/om0200510
Pott, Thomas; Jutzi, Peter; Kaim, Wolfgang; Schoeller, Wolfgang W.; Neumann, Beate; Stammler, Anja; Stammler, Hans-Georg; Wanner, Matthias (July 2002). "Reactivity of "GaI" TowardN-Substituted 1,4-Diazabuta-1,3-dienes: Synthesis and Characterization of Gallium Heterocycles Containing Paramagnetic Diazabutadiene Monoanions". Organometallics. 21 (15): 3169–3172. doi:10.1021/om0200510. ISSN 0276-7333. https://pubs.acs.org/doi/pdf/10.1021/om0200510
Baker, Robert J.; Jones, Cameron (2005-04-11). ""GaI": A versatile reagent for the synthetic chemist". Dalton Transactions (8): 1341–1348. doi:10.1039/B501310K. hdl:2262/69572. ISSN 1477-9234. PMID 15824768. https://pubs.rsc.org/en/content/articlelanding/2005/dt/b501310k
Pott, Thomas; Jutzi, Peter; Kaim, Wolfgang; Schoeller, Wolfgang W.; Neumann, Beate; Stammler, Anja; Stammler, Hans-Georg; Wanner, Matthias (July 2002). "Reactivity of "GaI" TowardN-Substituted 1,4-Diazabuta-1,3-dienes: Synthesis and Characterization of Gallium Heterocycles Containing Paramagnetic Diazabutadiene Monoanions". Organometallics. 21 (15): 3169–3172. doi:10.1021/om0200510. ISSN 0276-7333. https://pubs.acs.org/doi/pdf/10.1021/om0200510
Pott, Thomas; Jutzi, Peter; Kaim, Wolfgang; Schoeller, Wolfgang W.; Neumann, Beate; Stammler, Anja; Stammler, Hans-Georg; Wanner, Matthias (July 2002). "Reactivity of "GaI" TowardN-Substituted 1,4-Diazabuta-1,3-dienes: Synthesis and Characterization of Gallium Heterocycles Containing Paramagnetic Diazabutadiene Monoanions". Organometallics. 21 (15): 3169–3172. doi:10.1021/om0200510. ISSN 0276-7333. https://pubs.acs.org/doi/pdf/10.1021/om0200510
Baker, Robert J.; Farley, Robert D.; Jones, Cameron; Kloth, Marc; Murphy, Damien M. (2002-10-03). "The reactivity of diazabutadienes toward low oxidation state Group 13 iodides and the synthesis of a new gallium(I) carbene analogue". Journal of the Chemical Society, Dalton Transactions (20): 3844–3850. doi:10.1039/B206605J. ISSN 1364-5447. https://pubs.rsc.org/en/content/articlelanding/2002/dt/b206605j
Schmidt, Eva S.; Jockisch, Alexander; Schmidbaur, Hubert (1999-10-01). "A Carbene Analogue with Low-Valent Gallium as a Heteroatom in a quasi-Aromatic Imidazolate Anion". Journal of the American Chemical Society. 121 (41): 9758–9759. doi:10.1021/ja9928780. ISSN 0002-7863. https://doi.org/10.1021/ja9928780
Baker, Robert J.; Jones, Cameron; Mills, David P.; Murphy, Damien M.; Hey-Hawkins, Evamarie; Wolf, Robert (2006-12-14). "The reactivity of gallium-(I), -(II) and -(III) heterocycles towards Group 15 substrates: attempts to prepare gallium–terminal pnictinidene complexes". Dalton Transactions (1): 64–72. doi:10.1039/B511451A. ISSN 1477-9234. PMID 16357962. https://pubs.rsc.org/en/content/articlelanding/2006/dt/b511451a
Baker, Robert J.; Jones, Cameron (2005-09-01). "The coordination chemistry and reactivity of group 13 metal(I) heterocycles". Coordination Chemistry Reviews. 36th International Conference on Coordination Chemistry, Merida, Mexico, July 2004. 249 (17): 1857–1869. doi:10.1016/j.ccr.2004.12.016. ISSN 0010-8545. http://www.sciencedirect.com/science/article/pii/S0010854504003261
Jones, Cameron; Rose, Richard P.; Stasch, Andreas (2007-07-10). "Synthesis and characterisation of zinc gallyl complexes: First structural elucidations of Zn–Ga bonds". Dalton Transactions (28): 2997–2999. doi:10.1039/B706402K. ISSN 1477-9234. PMID 17622416. https://pubs.rsc.org/en/content/articlelanding/2007/dt/b706402k
Baker, Robert J.; Jones, Cameron (2005-09-01). "The coordination chemistry and reactivity of group 13 metal(I) heterocycles". Coordination Chemistry Reviews. 36th International Conference on Coordination Chemistry, Merida, Mexico, July 2004. 249 (17): 1857–1869. doi:10.1016/j.ccr.2004.12.016. ISSN 0010-8545. http://www.sciencedirect.com/science/article/pii/S0010854504003261
Hardman, Ned J.; Eichler, Barrett E.; Power, Philip P. (2000-01-01). "Synthesis and characterization of the monomer Ga{(NDippCMe)2CH} (Dipp = C6H3Pri2-2,6): a low valent gallium(I) carbene analogue". Chemical Communications (20): 1991–1992. doi:10.1039/B005686N. ISSN 1364-548X. https://pubs.rsc.org/en/content/articlelanding/2000/cc/b005686n
Loos, Dagmar; Baum, Elke; Ecker, Achim; Schnöckel, Hansgeorg; Downs, Anthony J. (1997). "Hexameric Aggregates in Crystalline (Pentamethylcyclopentadienyl)gallium(I) at 200 K". Angewandte Chemie International Edition in English. 36 (8): 860–862. doi:10.1002/anie.199708601. ISSN 1521-3773. https://onlinelibrary.wiley.com/doi/abs/10.1002/anie.199708601
Jutzi, Peter; Schebaum, Lars Oliver (2002-07-15). "A novel synthetic route to pentaalkylcyclopentadienylgallium(I) compounds". Journal of Organometallic Chemistry. 654 (1): 176–179. doi:10.1016/S0022-328X(02)01429-8. ISSN 0022-328X. http://www.sciencedirect.com/science/article/pii/S0022328X02014298
Baker, Robert J.; Jones, Cameron (2005-04-11). ""GaI": A versatile reagent for the synthetic chemist". Dalton Transactions (8): 1341–1348. doi:10.1039/B501310K. hdl:2262/69572. ISSN 1477-9234. PMID 15824768. https://pubs.rsc.org/en/content/articlelanding/2005/dt/b501310k
Green, Malcolm L. H.; Mountford, Philip; Smout, Geoffrey J.; Speel, S. Robert (1990-01-01). "New synthetic pathways into the organometallic chemistry of gallium". Polyhedron. 9 (22): 2763–2765. doi:10.1016/S0277-5387(00)86809-6. ISSN 0277-5387.Schenk, Christian; Köppe, Ralf; Schnöckel, Hansgeorg; Schnepf, Andreas (2011). "A Convenient Synthesis of Cyclopentadienylgallium – The Awakening of a Sleeping Beauty in Organometallic Chemistry". European Journal of Inorganic Chemistry. 2011 (25): 3681–3685. doi:10.1002/ejic.201100672. ISSN 1099-0682. http://www.sciencedirect.com/science/article/pii/S0277538700868096
Green, Malcolm L. H.; Mountford, Philip; Smout, Geoffrey J.; Speel, S. Robert (1990-01-01). "New synthetic pathways into the organometallic chemistry of gallium". Polyhedron. 9 (22): 2763–2765. doi:10.1016/S0277-5387(00)86809-6. ISSN 0277-5387.Schenk, Christian; Köppe, Ralf; Schnöckel, Hansgeorg; Schnepf, Andreas (2011). "A Convenient Synthesis of Cyclopentadienylgallium – The Awakening of a Sleeping Beauty in Organometallic Chemistry". European Journal of Inorganic Chemistry. 2011 (25): 3681–3685. doi:10.1002/ejic.201100672. ISSN 1099-0682. http://www.sciencedirect.com/science/article/pii/S0277538700868096
Naglav, Dominik; Tobey, Briac; Schnepf, Andreas (2013). "Application of GaCp as a Ligand in Coordination Chemistry: Similarities and Differences to GaCp*". European Journal of Inorganic Chemistry. 2013 (24): 4146–4149. doi:10.1002/ejic.201300401. ISSN 1099-0682. https://chemistry-europe.onlinelibrary.wiley.com/doi/abs/10.1002/ejic.201300401
Naglav, Dominik; Tobey, Briac; Schnepf, Andreas (2013). "Application of GaCp as a Ligand in Coordination Chemistry: Similarities and Differences to GaCp*". European Journal of Inorganic Chemistry. 2013 (24): 4146–4149. doi:10.1002/ejic.201300401. ISSN 1099-0682. https://chemistry-europe.onlinelibrary.wiley.com/doi/abs/10.1002/ejic.201300401
Naglav, Dominik; Tobey, Briac; Schnepf, Andreas (2013). "Application of GaCp as a Ligand in Coordination Chemistry: Similarities and Differences to GaCp*". European Journal of Inorganic Chemistry. 2013 (24): 4146–4149. doi:10.1002/ejic.201300401. ISSN 1099-0682. https://chemistry-europe.onlinelibrary.wiley.com/doi/abs/10.1002/ejic.201300401
Jutzi, Peter; Neumann, Beate; Reumann, Guido; Stammler, Hans-Georg (1998-03-01). "Pentamethylcyclopentadienylgallium (Cp*Ga): Alternative Synthesis and Application as a Terminal and Bridging Ligand in the Chemistry of Chromium, Iron, Cobalt, and Nickel". Organometallics. 17 (7): 1305–1314. doi:10.1021/om970913a. ISSN 0276-7333. https://doi.org/10.1021/om970913a
Jutzi, Peter; Neumann, Beate; Reumann, Guido; Stammler, Hans-Georg (1998-03-01). "Pentamethylcyclopentadienylgallium (Cp*Ga): Alternative Synthesis and Application as a Terminal and Bridging Ligand in the Chemistry of Chromium, Iron, Cobalt, and Nickel". Organometallics. 17 (7): 1305–1314. doi:10.1021/om970913a. ISSN 0276-7333. https://doi.org/10.1021/om970913a
Schnepf, Andreas; Schnöckel, Hansgeorg (2002). "Metalloid Aluminum and Gallium Clusters: Element Modifications on the Molecular Scale?". Angewandte Chemie International Edition. 41 (19): 3532–3554. doi:10.1002/1521-3773(20021004)41:19<3532::AID-ANIE3532>3.0.CO;2-4. ISSN 1521-3773. PMID 12370894. https://onlinelibrary.wiley.com/doi/abs/10.1002/1521-3773%2820021004%2941%3A19%3C3532%3A%3AAID-ANIE3532%3E3.0.CO%3B2-4
Baker, Robert J.; Jones, Cameron (2005-04-11). ""GaI": A versatile reagent for the synthetic chemist". Dalton Transactions (8): 1341–1348. doi:10.1039/B501310K. hdl:2262/69572. ISSN 1477-9234. PMID 15824768. https://pubs.rsc.org/en/content/articlelanding/2005/dt/b501310k
Baker, Robert J.; Jones, Cameron (2005-04-11). ""GaI": A versatile reagent for the synthetic chemist". Dalton Transactions (8): 1341–1348. doi:10.1039/B501310K. hdl:2262/69572. ISSN 1477-9234. PMID 15824768. https://pubs.rsc.org/en/content/articlelanding/2005/dt/b501310k
Köstler, Wolfgang; Linti, Gerald (1997). "Synthesis and Structure of a Tetragallane [R4Ga4I3]− and a Polyhedral Nonagallane [R6Ga9]". Angewandte Chemie International Edition in English. 36 (23): 2644–2646. doi:10.1002/anie.199726441. ISSN 1521-3773. https://onlinelibrary.wiley.com/doi/abs/10.1002/anie.199726441
Köstler, Wolfgang; Linti, Gerald (1997). "Synthesis and Structure of a Tetragallane [R4Ga4I3]− and a Polyhedral Nonagallane [R6Ga9]". Angewandte Chemie International Edition in English. 36 (23): 2644–2646. doi:10.1002/anie.199726441. ISSN 1521-3773. https://onlinelibrary.wiley.com/doi/abs/10.1002/anie.199726441
Baker, Robert J.; Jones, Cameron (2005-04-11). ""GaI": A versatile reagent for the synthetic chemist". Dalton Transactions (8): 1341–1348. doi:10.1039/B501310K. hdl:2262/69572. ISSN 1477-9234. PMID 15824768. https://pubs.rsc.org/en/content/articlelanding/2005/dt/b501310k
Kehrwald, Michael; Köstler, Wolfgang; Rodig, Alexander; Linti, Gerald; Blank, Thomas; Wiberg, Nils (2001-03-01). "Ga10[Si(SiMe3)3]6, [Ga10(SitBu3)6]-, and [Ga13(SitBu3)6]-Syntheses and Structural Characterization of Novel Gallium Cluster Compounds". Organometallics. 20 (5): 860–867. doi:10.1021/om000703p. ISSN 0276-7333. https://doi.org/10.1021/om000703p
Linti, Gerald; Köstler, Wolfgang; Piotrowski, Holger; Rodig, Alexander (1998). "A Silatetragallane—Classical Heterobicyclopentane or closo-Polyhedron?". Angewandte Chemie International Edition. 37 (16): 2209–2211. doi:10.1002/(SICI)1521-3773(19980904)37:16<2209::AID-ANIE2209>3.0.CO;2-3. ISSN 1521-3773. PMID 29711437. https://onlinelibrary.wiley.com/doi/abs/10.1002/%28SICI%291521-3773%2819980904%2937%3A16%3C2209%3A%3AAID-ANIE2209%3E3.0.CO%3B2-3
Linti, Gerald; Köstler, Wolfgang; Piotrowski, Holger; Rodig, Alexander (1998). "A Silatetragallane—Classical Heterobicyclopentane or closo-Polyhedron?". Angewandte Chemie International Edition. 37 (16): 2209–2211. doi:10.1002/(SICI)1521-3773(19980904)37:16<2209::AID-ANIE2209>3.0.CO;2-3. ISSN 1521-3773. PMID 29711437. https://onlinelibrary.wiley.com/doi/abs/10.1002/%28SICI%291521-3773%2819980904%2937%3A16%3C2209%3A%3AAID-ANIE2209%3E3.0.CO%3B2-3
Blundell, Toby J.; Taylor, Laurence J.; Valentine, Andrew J.; Lewis, William; Blake, Alexander J.; McMaster, Jonathan; Kays, Deborah L. (2020-07-21). "A transition metal–gallium cluster formed via insertion of "GaI"". Chemical Communications. 56 (58): 8139–8142. doi:10.1039/D0CC03559A. ISSN 1364-548X. PMID 32691803. https://doi.org/10.1039%2FD0CC03559A
Blundell, Toby J.; Taylor, Laurence J.; Valentine, Andrew J.; Lewis, William; Blake, Alexander J.; McMaster, Jonathan; Kays, Deborah L. (2020-07-21). "A transition metal–gallium cluster formed via insertion of "GaI"". Chemical Communications. 56 (58): 8139–8142. doi:10.1039/D0CC03559A. ISSN 1364-548X. PMID 32691803. https://doi.org/10.1039%2FD0CC03559A
Baker, Robert J.; Jones, Cameron (2005-04-11). ""GaI": A versatile reagent for the synthetic chemist". Dalton Transactions (8): 1341–1348. doi:10.1039/B501310K. hdl:2262/69572. ISSN 1477-9234. PMID 15824768. https://pubs.rsc.org/en/content/articlelanding/2005/dt/b501310k
Anandhi, U.; Sharp, Paul R. (2004). "A Gallium-Coated Gold Cluster". Angewandte Chemie International Edition. 43 (45): 6128–6131. doi:10.1002/anie.200461295. ISSN 1521-3773. PMID 15549757. https://onlinelibrary.wiley.com/doi/abs/10.1002/anie.200461295
Anandhi, U.; Sharp, Paul R. (2004). "A Gallium-Coated Gold Cluster". Angewandte Chemie International Edition. 43 (45): 6128–6131. doi:10.1002/anie.200461295. ISSN 1521-3773. PMID 15549757. https://onlinelibrary.wiley.com/doi/abs/10.1002/anie.200461295