The idea of agent-based modeling was developed as a relatively simple concept in the late 1940s. Since it requires computation-intensive procedures, it did not become widespread until the 1990s.
The first use of the word "agent" and a definition as it is currently used today is hard to track down. One candidate appears to be John Holland and John H. Miller's 1991 paper "Artificial Adaptive Agents in Economic Theory", based on an earlier conference presentation of theirs. A stronger and earlier candidate is Allan Newell, who in the first Presidential Address of AAAI (published as The Knowledge Level) discussed intelligent agents as a concept.
At the same time, during the 1980s, social scientists, mathematicians, operations researchers, and a scattering of people from other disciplines developed Computational and Mathematical Organization Theory (CMOT). This field grew as a special interest group of The Institute of Management Sciences (TIMS) and its sister society, the Operations Research Society of America (ORSA).
The 1990s were especially notable for the expansion of ABM within the social sciences, one notable effort was the large-scale ABM, Sugarscape, developed by
Joshua M. Epstein and Robert Axtell to simulate and explore the role of social phenomena such as seasonal migrations, pollution, sexual reproduction, combat, and transmission of disease and even culture. Other notable 1990s developments included Carnegie Mellon University's Kathleen Carley ABM, to explore the co-evolution of social networks and culture. The Santa Fe Institute (SFI) was important in encouraging the development of the ABM modeling platform Swarm under the leadership of Christopher Langton. Research conducted through SFI allowed the expansion of ABM techniques to a number of fields including study of the social and spatial dynamics of small-scale human societies and primates. During this 1990s timeframe Nigel Gilbert published the first textbook on Social Simulation: Simulation for the social scientist (1999) and established a journal from the perspective of social sciences: the Journal of Artificial Societies and Social Simulation (JASSS). Other than JASSS, agent-based models of any discipline are within scope of SpringerOpen journal Complex Adaptive Systems Modeling (CASM).
Through the mid-1990s, the social sciences thread of ABM began to focus on such issues as designing effective teams, understanding the communication required for organizational effectiveness, and the behavior of social networks. CMOT—later renamed Computational Analysis of Social and Organizational Systems (CASOS)—incorporated more and more agent-based modeling. Samuelson (2000) is a good brief overview of the early history, and Samuelson (2005) and Samuelson and Macal (2006) trace the more recent developments.
Agent-based models consist of dynamically interacting rule-based agents. The systems within which they interact can create real-world-like complexity. Typically agents are
situated in space and time and reside in networks or in lattice-like neighborhoods. The location of the agents and their responsive behavior are encoded in algorithmic form in computer programs. In some cases, though not always, the agents may be considered as intelligent and purposeful. In ecological ABM (often referred to as "individual-based models" in ecology), agents may, for example, be trees in a forest, and would not be considered intelligent, although they may be "purposeful" in the sense of optimizing access to a resource (such as water).
The modeling process is best described as inductive. The modeler makes those assumptions thought most relevant to the situation at hand and then watches phenomena emerge from the agents' interactions. Sometimes that result is an equilibrium. Sometimes it is an emergent pattern. Sometimes, however, it is an unintelligible mangle.
In some ways, agent-based models complement traditional analytic methods. Where analytic methods enable humans to characterize the equilibria of a system, agent-based models allow the possibility of generating those equilibria. This generative contribution may be the most mainstream of the potential benefits of agent-based modeling. Agent-based models can explain the emergence of higher-order patterns—network structures of terrorist organizations and the Internet, power-law distributions in the sizes of traffic jams, wars, and stock-market crashes, and social segregation that persists despite populations of tolerant people. Agent-based models also can be used to identify lever points, defined as moments in time in which interventions have extreme consequences, and to distinguish among types of path dependency.
Rather than focusing on stable states, many models consider a system's robustness—the ways that complex systems adapt to internal and external pressures so as to maintain their functionalities. The task of harnessing that complexity requires consideration of the agents themselves—their diversity, connectedness, and level of interactions.
Recent work on the Modeling and simulation of Complex Adaptive Systems has demonstrated the need for combining agent-based and complex network based models. describe a framework consisting of four levels of developing models of complex adaptive systems described using several example multidisciplinary case studies:
Other methods of describing agent-based models include code templates and text-based methods such as the ODD (Overview, Design concepts, and Design Details) protocol.
The role of the environment where agents live, both macro and micro, is also becoming an important factor in agent-based modelling and simulation work. Simple environment affords simple agents, but complex environments generate diversity of behavior.
One strength of agent-based modelling is its ability to mediate information flow between scales. When additional details about an agent are needed, a researcher can integrate it with models describing the extra details. When one is interested in the emergent behaviours demonstrated by the agent population, they can combine the agent-based model with a continuum model describing population dynamics. For example, in a study about CD4+ T cells (a key cell type in the adaptive immune system), the researchers modelled biological phenomena occurring at different spatial (intracellular, cellular, and systemic), temporal, and organizational scales (signal transduction, gene regulation, metabolism, cellular behaviors, and cytokine transport). In the resulting modular model, signal transduction and gene regulation are described by a logical model, metabolism by constraint-based models, cell population dynamics are described by an agent-based model, and systemic cytokine concentrations by ordinary differential equations. In this multi-scale model, the agent-based model occupies the central place and orchestrates every stream of information flow between scales.
Agent-based modeling has been used extensively in biology, including the analysis of the spread of epidemics, and the threat of biowarfare, biological applications including population dynamics, stochastic gene expression, plant-animal interactions, vegetation ecology, migratory ecology, landscape diversity, sociobiology, the growth and decline of ancient civilizations, evolution of ethnocentric behavior, forced displacement/migration, language choice dynamics, cognitive modeling, and biomedical applications including modeling 3D breast tissue formation/morphogenesis, the effects of ionizing radiation on mammary stem cell subpopulation dynamics, inflammation,
and the human immune system, and the evolution of foraging behaviors. Agent-based models have also been used for developing decision support systems such as for breast cancer. Agent-based models are increasingly being used to model pharmacological systems in early stage and pre-clinical research to aid in drug development and gain insights into biological systems that would not be possible a priori. Military applications have also been evaluated. Moreover, agent-based models have been recently employed to study molecular-level biological systems. Agent-based models have also been written to describe ecological processes at work in ancient systems, such as those in dinosaur environments and more recent ancient systems as well.
Recently, agent based modelling and simulation has been applied to various domains such as studying the impact of publication venues by researchers in the computer science domain (journals versus conferences). In addition, ABMs have been used to simulate information delivery in ambient assisted environments. A November 2016 article in arXiv analyzed an agent based simulation of posts spread in Facebook. In the domain of peer-to-peer, ad hoc and other self-organizing and complex networks, the usefulness of agent based modeling and simulation has been shown. The use of a computer science-based formal specification framework coupled with wireless sensor networks and an agent-based simulation has recently been demonstrated.
Agent based evolutionary search or algorithm is a new research topic for solving complex optimization problems.
In the realm of team science, agent-based modeling has been utilized to assess the effects of team members' characteristics and biases on team performance across various settings. By simulating interactions between agents—each representing individual team members with distinct traits and biases—this modeling approach enables researchers to explore how these factors collectively influence the dynamics and outcomes of team performance. Consequently, agent-based modeling provides a nuanced understanding of team science, facilitating a deeper exploration of the subtleties and variabilities inherent in team-based collaborations.
ABMs have been deployed in architecture and urban planning to evaluate design and to simulate pedestrian flow in the urban environment and the examination of public policy applications to land-use. There is also a growing field of socio-economic analysis of infrastructure investment impact using ABM's ability to discern systemic impacts upon a socio-economic network. Heterogeneity and dynamics can be easily built in ABM models to address wealth inequality and social mobility.
ABMs have also been proposed as applied educational tools for diplomats in the field of international relations and for domestic and international policymakers to enhance their evaluation of public policy.
ABMs have also been applied in water resources planning and management, particularly for exploring, simulating, and predicting the performance of infrastructure design and policy decisions, and in assessing the value of cooperation and information exchange in large water resources systems.
The agent-directed simulation (ADS) metaphor distinguishes between two categories, namely "Systems for Agents" and "Agents for Systems." Systems for Agents (sometimes referred to as agents systems) are systems implementing agents for the use in engineering, human and social dynamics, military applications, and others. Agents for Systems are divided in two subcategories. Agent-supported systems deal with the use of agents as a support facility to enable computer assistance in problem solving or enhancing cognitive capabilities. Agent-based systems focus on the use of agents for the generation of model behavior in a system evaluation (system studies and analyses).
Hallerbach et al. discussed the application of agent-based approaches for the development and validation of automated driving systems via a digital twin of the vehicle-under-test and microscopic traffic simulation based on independent agents. Waymo has created a multi-agent simulation environment Carcraft to test algorithms for self-driving cars. It simulates traffic interactions between human drivers, pedestrians and automated vehicles. People's behavior is imitated by artificial agents based on data of real human behavior. The basic idea of using agent-based modeling to understand self-driving cars was discussed as early as 2003.
A recent development is the use of data-parallel algorithms on Graphics Processing Units GPUs for ABM simulation. The extreme memory bandwidth combined with the sheer number crunching power of multi-processor GPUs has enabled simulation of millions of agents at tens of frames per second.
Since Agent-Based Modeling is more of a modeling framework than a particular piece of software or platform, it has often been used in conjunction with other modeling forms. For instance, agent-based models have also been combined with Geographic Information Systems (GIS). This provides a useful combination where the ABM serves as a process model and the GIS system can provide a model of pattern. Similarly, Social Network Analysis (SNA) tools and agent-based models are sometimes integrated, where the ABM is used to simulate the dynamics on the network while the SNA tool models and analyzes the network of interactions. Tools like GAMA provide a natural way to integrate system dynamics and GIS with ABM.
As an example of V&V technique, consider VOMAS (virtual overlay multi-agent system), a software engineering based approach, where a virtual overlay multi-agent system is developed alongside the agent-based model. Muazi et al. also provide an example of using VOMAS for verification and validation of a forest fire simulation model. Another software engineering method, i.e. Test-Driven Development has been adapted to for agent-based model validation. This approach has another advantage that allows an automatic validation using unit test tools.
Grimm, Volker; Railsback, Steven F. (2005). Individual-based Modeling and Ecology. Princeton University Press. p. 485. ISBN 978-0-691-09666-7. 978-0-691-09666-7
Niazi, Muaz; Hussain, Amir (2011). "Agent-based Computing from Multi-agent Systems to Agent-Based Models: A Visual Survey" (PDF). Scientometrics. 89 (2): 479–499. arXiv:1708.05872. doi:10.1007/s11192-011-0468-9. hdl:1893/3378. S2CID 17934527. Archived from the original (PDF) on October 12, 2013. https://web.archive.org/web/20131012005027/http://cecosm.yolasite.com/resources/Accepted_Scientometrics_ABM_Website.pdf
Niazi, Muaz; Hussain, Amir (2011). "Agent-based Computing from Multi-agent Systems to Agent-Based Models: A Visual Survey" (PDF). Scientometrics. 89 (2): 479–499. arXiv:1708.05872. doi:10.1007/s11192-011-0468-9. hdl:1893/3378. S2CID 17934527. Archived from the original (PDF) on October 12, 2013. https://web.archive.org/web/20131012005027/http://cecosm.yolasite.com/resources/Accepted_Scientometrics_ABM_Website.pdf
Gustafsson, Leif; Sternad, Mikael (2010). "Consistent micro, macro, and state-based population modelling". Mathematical Biosciences. 225 (2): 94–107. doi:10.1016/j.mbs.2010.02.003. PMID 20171974. /wiki/Doi_(identifier)
"Agent-Based Models of Industrial Ecosystems". Rutgers University. October 6, 2003. Archived from the original on July 20, 2011. https://web.archive.org/web/20110720041914/http://policy.rutgers.edu/andrews/projects/abm/abmarticle.htm
Bonabeau, E. (May 14, 2002). "Agent-based modeling: Methods and techniques for simulating human systems". Proceedings of the National Academy of Sciences of the United States of America. 99 (Suppl 3): 7280–7. Bibcode:2002PNAS...99.7280B. doi:10.1073/pnas.082080899. PMC 128598. PMID 12011407. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC128598
Schelling, Thomas C. (1971). "Dynamic Models of Segregation" (PDF). Journal of Mathematical Sociology. 1 (2): 143–186. doi:10.1080/0022250x.1971.9989794. Archived (PDF) from the original on December 1, 2016. Retrieved April 21, 2015. http://zolaist.org/wiki/images/c/cf/Models_of_Segregation.pdf
Hogeweg, Paulien (1983). "The ontogeny of the interaction structure in bumble bee colonies: a MIRROR model". Behavioral Ecology and Sociobiology. 12 (4): 271–283. Bibcode:1983BEcoS..12..271H. doi:10.1007/BF00302895. S2CID 22530183. /wiki/Bibcode_(identifier)
Axelrod, Robert (1997). The Complexity of Cooperation: Agent-Based Models of Competition and Collaboration. Princeton: Princeton University Press. ISBN 978-0-691-01567-5.{{cite book}}: CS1 maint: publisher location (link) 978-0-691-01567-5
Holland, J.H.; Miller, J.H. (1991). "Artificial Adaptive Agents in Economic Theory" (PDF). American Economic Review. 81 (2): 365–71. Archived from the original (PDF) on October 27, 2005. https://web.archive.org/web/20051027152415/http://zia.hss.cmu.edu/miller/papers/aaa.pdf
Newell, Allen (January 1982). "The knowledge level". Artificial Intelligence. 18 (1): 87–127. doi:10.1016/0004-3702(82)90012-1. ISSN 0004-3702. S2CID 40702643. /wiki/Doi_(identifier)
Kohler, Timothy; Gumerman, George (2000). Dynamics in Human and Primate Societies: Agent-based Modeling of Social and Spatial Processes. New York, New York: Santa Fe Institute and Oxford University Press. ISBN 0-19-513167-3. 0-19-513167-3
Epstein, Joshua M.; Axtell, Robert (October 11, 1996). Growing artificial societies: social science from the bottom up. Brookings Institution Press. pp. 224. ISBN 978-0-262-55025-3. 978-0-262-55025-3
"Construct". Computational Analysis of Social Organizational Systems. Archived from the original on October 11, 2008. Retrieved February 19, 2008. http://www.casos.cs.cmu.edu/projects/construct/index.php
Kohler, Timothy; Gumerman, George (2000). Dynamics in Human and Primate Societies: Agent-based Modeling of Social and Spatial Processes. New York, New York: Santa Fe Institute and Oxford University Press. ISBN 0-19-513167-3. 0-19-513167-3
"Springer Complex Adaptive Systems Modeling Journal (CASM)". Archived from the original on June 18, 2012. Retrieved July 1, 2012. http://www.casmodeling.com/
Samuelson, Douglas A. (December 2000). "Designing Organizations". OR/MS Today. Archived from the original on June 17, 2019. Retrieved June 17, 2019. https://www.informs.org/ORMS-Today/Archived-Issues/2000/orms-12-00/Designing-Organizations
Samuelson, Douglas A. (February 2005). "Agents of Change". OR/MS Today. Archived from the original on June 17, 2019. Retrieved June 17, 2019. https://www.informs.org/ORMS-Today/Archived-Issues/2005/orms-2-05/Agents-of-Change
Samuelson, Douglas A.; Macal, Charles M. (August 2006). "Agent-Based Modeling Comes of Age". OR/MS Today. Archived from the original on June 17, 2019. Retrieved June 17, 2019. https://www.informs.org/ORMS-Today/Archived-Issues/2006/orms-8-06/Agent-Based-Simulation-Comes-of-Age
Sun, Ron, ed. (March 2006). Cognition and Multi-Agent Interaction: From Cognitive Modeling to Social Simulation. Cambridge University Press. ISBN 978-0-521-83964-8. 978-0-521-83964-8
"UCLA Lake Arrowhead Symposium: History". uclaarrowheadsymposium.org. UCLA Institute of Transportation Studies. Retrieved February 11, 2024. https://www.uclaarrowheadsymposium.org/history/
Park, Joon Sung; O'Brien, Joseph; Cai, Carrie; Morris, Meredith; Liang, Percey; Bernstein, Michael (2023). "Generative Agents: Interactive Simulacra of Human Behavior". arXiv:2304.03442 [cs.HC]. /wiki/ArXiv_(identifier)
Aditya Kurve; Khashayar Kotobi; George Kesidis (2013). "An agent-based framework for performance modeling of an optimistic parallel discrete event simulator". Complex Adaptive Systems Modeling. 1: 12. doi:10.1186/2194-3206-1-12. https://doi.org/10.1186%2F2194-3206-1-12
Niazi, Muaz A. K. (June 30, 2011). "Towards A Novel Unified Framework for Developing Formal, Network and Validated Agent-Based Simulation Models of Complex Adaptive Systems". hdl:1893/3365. {{cite journal}}: Cite journal requires |journal= (help) (PhD Thesis) /wiki/Hdl_(identifier)
Niazi, M.A. and Hussain, A (2012), Cognitive Agent-based Computing-I: A Unified Framework for Modeling Complex Adaptive Systems using Agent-based & Complex Network-based Methods Cognitive Agent-based Computing Archived December 24, 2012, at the Wayback Machine https://www.springer.com/biomed/neuroscience/book/978-94-007-3851-5
"Swarm code templates for model comparison". Swarm Development Group. Archived from the original on August 3, 2008. https://web.archive.org/web/20080803125909/http://www.swarm.org/index.php/Software_templates
Volker Grimm; Uta Berger; Finn Bastiansen; et al. (September 15, 2006). "A standard protocol for describing individual-based and agent-based models". Ecological Modelling. 198 (1–2): 115–126. Bibcode:2006EcMod.198..115G. doi:10.1016/j.ecolmodel.2006.04.023. S2CID 11194736. (ODD Paper) /wiki/Bibcode_(identifier)
Ch'ng, E. (2012) Macro and Micro Environment for Diversity of Behaviour in Artificial Life Simulation, Artificial Life Session, The 6th International Conference on Soft Computing and Intelligent Systems, The 13th International Symposium on Advanced Intelligent Systems, November 20–24, 2012, Kobe, Japan. Macro and Micro Environment Archived November 13, 2013, at the Wayback Machine http://complexity.io/Publications/chng-MacroMicroEnv.pdf
Simon, Herbert A. The sciences of the artificial. MIT press, 1996.
Wertheim, Kenneth Y.; Puniy, Bhanwar Lal; Fleur, Alyssa La; Shah, Ab Rauf; Barberis, Matteo; Helikar, Tomáš (August 3, 2021). "A multi-approach and multi-scale platform to model CD4+ T cells responding to infections". PLOS Computational Biology. 17 (8): e1009209. Bibcode:2021PLSCB..17E9209W. doi:10.1371/journal.pcbi.1009209. ISSN 1553-7358. PMC 8376204. PMID 34343169. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8376204
Situngkir, Hokky (2004). "Epidemiology Through Cellular Automata: Case of Study Avian Influenza in Indonesia". arXiv:nlin/0403035. /wiki/ArXiv_(identifier)
Caplat, Paul; Anand, Madhur; Bauch, Chris (March 10, 2008). "Symmetric competition causes population oscillations in an individual-based model of forest dynamics". Ecological Modelling. 211 (3–4): 491–500. Bibcode:2008EcMod.211..491C. doi:10.1016/j.ecolmodel.2007.10.002. /wiki/Bibcode_(identifier)
Thomas, Philipp (December 2019). "Intrinsic and extrinsic noise of gene expression in lineage trees". Scientific Reports. 9 (1): 474. Bibcode:2019NatSR...9..474T. doi:10.1038/s41598-018-35927-x. ISSN 2045-2322. PMC 6345792. PMID 30679440. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6345792
Fedriani JM, T Wiegand, D Ayllón, F Palomares, A Suárez-Esteban and V. Grimm. 2018. Assisting seed dispersers to restore old-fields: an individual-based model of the interactions among badgers, foxes, and Iberian pear trees. Journal of Applied Ecology 55: 600–611.
Ch'ng, E. (2009) An Artificial Life-Based Vegetation Modelling Approach for Biodiversity Research, in Nature-Inspired informatics for Intelligent Applications and Knowledge Discovery: Implications in Business, Science and Engineering, R. Chiong, Editor. 2009, IGI Global: Hershey, PA. http://complexity.io/Publications/NII-alifeVeg-eCHNG.pdf Archived November 13, 2013, at the Wayback Machine http://complexity.io/Publications/NII-alifeVeg-eCHNG.pdf
Weller, F.G.; Webb, E.B.; Beatty, W.S.; Fogenburg, S.; Kesler, D.; Blenk, R.H.; Eadie, J.M.; Ringelman, K.; Miller, M. L. (2022). Agent-based modeling of movements and habitat selection by mid-continent mallards (Report). Cooperator Science Series. Washington, D. C: U.S. Department of Interior, Fish and Wildlife Service. doi:10.3996/css47216360. FWS/CSS-143-2022. /wiki/Doi_(identifier)
Wirth, E.; Szabó, Gy.; Czinkóczky, A. (June 7, 2016). "Measure of Landscape Heterogeneity by Agent-Based Methodology". ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences. III-8: 145–151. Bibcode:2016ISPAnIII8..145W. doi:10.5194/isprs-annals-iii-8-145-2016. https://doi.org/10.5194%2Fisprs-annals-iii-8-145-2016
Lima, Francisco W.S.; Hadzibeganovic, Tarik; Stauffer., Dietrich (2009). "Evolution of ethnocentrism on undirected and directed Barabási-Albert networks". Physica A. 388 (24): 4999–5004. arXiv:0905.2672. Bibcode:2009PhyA..388.4999L. doi:10.1016/j.physa.2009.08.029. S2CID 18233740. /wiki/ArXiv_(identifier)
Lima, Francisco W. S.; Hadzibeganovic, Tarik; Stauffer, Dietrich (2009). "Evolution of ethnocentrism on undirected and directed Barabási–Albert networks". Physica A. 388 (24): 4999–5004. arXiv:0905.2672. Bibcode:2009PhyA..388.4999L. doi:10.1016/j.physa.2009.08.029. S2CID 18233740. /wiki/ArXiv_(identifier)
Edwards, Scott (June 9, 2009). The Chaos of Forced Migration: A Modeling Means to an Humanitarian End. VDM Verlag. p. 168. ISBN 978-3-639-16516-6. 978-3-639-16516-6
Hadzibeganovic, Tarik; Stauffer, Dietrich; Schulze, Christian (2009). "Agent-based computer simulations of language choice dynamics". Annals of the New York Academy of Sciences. 1167 (1): 221–229. Bibcode:2009NYASA1167..221H. doi:10.1111/j.1749-6632.2009.04507.x. PMID 19580569. S2CID 32790067. /wiki/Bibcode_(identifier)
Tang, Jonathan; Enderling, Heiko; Becker-Weimann, Sabine; Pham, Christopher; Polyzos, Aris; Chen, Charlie; Costes, Sylvain (2011). "Phenotypic transition maps of 3D breast acini obtained by imaging-guided agent-based modeling". Integrative Biology. 3 (4): 408–21. doi:10.1039/c0ib00092b. PMC 4009383. PMID 21373705. /wiki/Heiko_Enderling
Tang, Jonathan; Fernando-Garcia, Ignacio; Vijayakumar, Sangeetha; Martinez-Ruis, Haydeliz; Illa-Bochaca, Irineu; Nguyen, David; Mao, Jian-Hua; Costes, Sylvain; Barcellos-Hoff, Mary Helen (2014). "Irradiation of juvenile, but not adult, mammary gland increases stem cell self-renewal and estrogen receptor negative tumors". Stem Cells. 32 (3): 649–61. doi:10.1002/stem.1533. PMID 24038768. S2CID 32979016. https://doi.org/10.1002%2Fstem.1533
Tang, Jonathan; Ley, Klaus; Hunt, C. Anthony (2007). "Dynamics of in silico leukocyte rolling, activation, and adhesion". BMC Systems Biology. 1 (14): 14. doi:10.1186/1752-0509-1-14. PMC 1839892. PMID 17408504. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1839892
Tang, Jonathan; Hunt, C. Anthony (2010). "Identifying the rules of engagement enabling leukocyte rolling, activation, and adhesion". PLOS Computational Biology. 6 (2): e1000681. Bibcode:2010PLSCB...6E0681T. doi:10.1371/journal.pcbi.1000681. PMC 2824748. PMID 20174606. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2824748
Castiglione, Filippo; Celada, Franco (2015). Immune System Modeling and Simulation. CRC Press, Boca Raton. p. 274. ISBN 978-1-4665-9748-8. Archived from the original on February 4, 2023. Retrieved December 17, 2017. 978-1-4665-9748-8
Liang, Tong; Brinkman, Braden A. W. (March 14, 2022). "Evolution of innate behavioral strategies through competitive population dynamics". PLOS Computational Biology. 18 (3): e1009934. Bibcode:2022PLSCB..18E9934L. doi:10.1371/journal.pcbi.1009934. ISSN 1553-7358. PMC 8947601. PMID 35286315. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8947601
Siddiqa, Amnah; Niazi, Muaz; Mustafa, Farah; Bokhari, Habib; Hussain, Amir; Akram, Noreen; Shaheen, Shabnum; Ahmed, Fouzia; Iqbal, Sarah (2009). "A new hybrid agent-based modeling & simulation decision support system for breast cancer data analysis" (PDF). 2009 International Conference on Information and Communication Technologies. pp. 134–139. doi:10.1109/ICICT.2009.5267202. ISBN 978-1-4244-4608-7. S2CID 14433449. Archived from the original (PDF) on June 14, 2011. (Breast Cancer DSS) 978-1-4244-4608-7
Butler, James; Cosgrove, Jason; Alden, Kieran; Read, Mark; Kumar, Vipin; Cucurull-Sanchez, Lourdes; Timmis, Jon; Coles, Mark (2015). "Agent-Based Modeling in Systems Pharmacology". CPT: Pharmacometrics & Systems Pharmacology. 4 (11): 615–629. doi:10.1002/psp4.12018. PMC 4716580. PMID 26783498. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4716580
Barathy, Gnana; Yilmaz, Levent; Tolk, Andreas (March 2012). "Agent Directed Simulation for Combat Modeling and Distributed Simulation". Engineering Principles of Combat Modeling and Distributed Simulation. Hoboken, NJ: Wiley. pp. 669–714. doi:10.1002/9781118180310.ch27. ISBN 9781118180310. 9781118180310
Azimi, Mohammad; Jamali, Yousef; Mofrad, Mohammad R. K. (2011). "Accounting for Diffusion in Agent Based Models of Reaction-Diffusion Systems with Application to Cytoskeletal Diffusion". PLOS ONE. 6 (9): e25306. Bibcode:2011PLoSO...625306A. doi:10.1371/journal.pone.0025306. PMC 3179499. PMID 21966493. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3179499
Azimi, Mohammad; Mofrad, Mohammad R. K. (2013). "Higher Nucleoporin-Importinβ Affinity at the Nuclear Basket Increases Nucleocytoplasmic Import". PLOS ONE. 8 (11): e81741. Bibcode:2013PLoSO...881741A. doi:10.1371/journal.pone.0081741. PMC 3840022. PMID 24282617. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3840022
Azimi, Mohammad; Bulat, Evgeny; Weis, Karsten; Mofrad, Mohammad R. K. (November 5, 2014). "An agent-based model for mRNA export through the nuclear pore complex". Molecular Biology of the Cell. 25 (22): 3643–3653. doi:10.1091/mbc.E14-06-1065. PMC 4230623. PMID 25253717. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4230623
Pahl, Cameron C.; Ruedas, Luis (2021). "Carnosaurs as Apex Scavengers: Agent-based simulations reveal possible vulture analogues in late Jurassic Dinosaurs". Ecological Modelling. 458: 109706. Bibcode:2021EcMod.45809706P. doi:10.1016/j.ecolmodel.2021.109706. /wiki/Bibcode_(identifier)
Volmer; et al. (2017). "Did Panthera pardus (Linnaeus, 1758) become extinct in Sumatra because of competition for prey? Modeling interspecific competition within the Late Pleistocene carnivore guild of the Padang Highlands, Sumatra". Palaeogeography, Palaeoclimatology, Palaeoecology. 487: 175–186. Bibcode:2017PPP...487..175V. doi:10.1016/j.palaeo.2017.08.032. /wiki/Bibcode_(identifier)
Hagen, Oskar; Flück, Benjamin; Fopp, Fabian; Cabral, Juliano C.; Hartig, Florian; Pontarp, Mikael; Rangel, Thiago F.; Pellissier, Loïc (2021). "gen3sis: A general engine for eco-evolutionary simulations of the processes that shape Earth's biodiversity". PLOS Biology. 19 (7): e3001340. doi:10.1371/journal.pbio.3001340. PMC 8384074. PMID 34252071. S2CID 235807562. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8384074
Eisinger, Dirk; Thulke, Hans-Hermann (April 1, 2008). "Spatial pattern formation facilitates eradication of infectious diseases". The Journal of Applied Ecology. 45 (2): 415–423. Bibcode:2008JApEc..45..415E. doi:10.1111/j.1365-2664.2007.01439.x. ISSN 0021-8901. PMC 2326892. PMID 18784795. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2326892
Railsback, Steven F.; Grimm, Volker (March 26, 2019). Agent-Based and Individual-Based Modeling. Princeton University Press. ISBN 978-0-691-19082-2. Archived from the original on October 24, 2020. Retrieved October 19, 2020. 978-0-691-19082-2
Adam, David (April 2, 2020). "Special report: The simulations driving the world's response to COVID-19". Nature. 580 (7803): 316–318. Bibcode:2020Natur.580..316A. doi:10.1038/d41586-020-01003-6. PMID 32242115. S2CID 214771531. /wiki/Bibcode_(identifier)
Sridhar, Devi; Majumder, Maimuna S. (April 21, 2020). "Modelling the pandemic". BMJ. 369: m1567. doi:10.1136/bmj.m1567. ISSN 1756-1833. PMID 32317328. S2CID 216074714. Archived from the original on May 16, 2021. Retrieved October 19, 2020. https://www.bmj.com/content/369/bmj.m1567
Squazzoni, Flaminio; Polhill, J. Gareth; Edmonds, Bruce; Ahrweiler, Petra; Antosz, Patrycja; Scholz, Geeske; Chappin, Émile; Borit, Melania; Verhagen, Harko; Giardini, Francesca; Gilbert, Nigel (2020). "Computational Models That Matter During a Global Pandemic Outbreak: A Call to Action". Journal of Artificial Societies and Social Simulation. 23 (2): 10. doi:10.18564/jasss.4298. hdl:10037/19057. ISSN 1460-7425. S2CID 216426533. Archived from the original on February 24, 2021. Retrieved October 19, 2020. http://jasss.soc.surrey.ac.uk/23/2/10.html
Maziarz, Mariusz; Zach, Martin (2020). "Agent-based modelling for SARS-CoV-2 epidemic prediction and intervention assessment: A methodological appraisal". Journal of Evaluation in Clinical Practice. 26 (5): 1352–1360. doi:10.1111/jep.13459. ISSN 1365-2753. PMC 7461315. PMID 32820573. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7461315
Manout, O.; Ciari, F. (2021). "Assessing the Role of Daily Activities and Mobility in the Spread of COVID-19 in Montreal With an Agent-Based Approach". Frontiers in Built Environment. 7. doi:10.3389/fbuil.2021.654279. https://pesquisa.bvsalud.org/global-literature-on-novel-coronavirus-2019-ncov/resource/pt/covidwho-1346397
Kerr, Cliff; et al. (2021), "Covasim: an agent-based model of COVID-19 dynamics and interventions", medRxiv, vol. 17, no. 7, pp. e1009149, Bibcode:2021PLSCB..17E9149K, doi:10.1371/journal.pcbi.1009149, PMC 8341708, PMID 34310589 /wiki/Bibcode_(identifier)
Hinch, Robert; et al. (2021), "OpenABM-Covid19—An agent-based model for non-pharmaceutical interventions against COVID-19 including contact tracing", PLOS Computational Biology, 17 (7): e1009146, Bibcode:2021PLSCB..17E9146H, doi:10.1371/journal.pcbi.1009146, PMC 8328312, PMID 34252083 /wiki/Bibcode_(identifier)
Aylett-Bullock, Joseph; Cuesta-Lazaro, Carolina; Quera-Bofarull, Arnau; Icaza-Lizaola, Miguel; Sedgewick, Aidan; Truong, Henry; Curran, Aoife; Elliott, Edward; Caulfield, Tristan; Fong, Kevin; Vernon, Ian; Williams, Julian; Bower, Richard; Krauss, Frank (2021), "JUNE: open-source individual-based epidemiology simulation", Royal Society Open Science, 8 (7): 210506, doi:10.1098/rsos.210506, retrieved June 2, 2025 https://royalsocietypublishing.org/doi/abs/10.1098/rsos.210506
Shattock, Andrew; Le Rutte, Epke; et al. (2021), "Impact of vaccination and non-pharmaceutical interventions on SARS-CoV-2 dynamics in Switzerland", Epidemics, 38 (7): 100535, Bibcode:2021PLSCB..17E9146H, doi:10.1016/j.epidem.2021.100535, PMC 8669952, PMID 34923396 /wiki/Bibcode_(identifier)
"Git-repository with open access source-code for OpenCOVID". GitHub. Swiss TPH. January 31, 2022. Archived from the original on February 15, 2022. Retrieved February 15, 2022. https://github.com/SwissTPH/OpenCOVID
Rand, William; Rust, Roland T. (2011). "Agent-based modeling in marketing: Guidelines for rigor". International Journal of Research in Marketing. 28 (3): 181–193. doi:10.1016/j.ijresmar.2011.04.002. /wiki/Doi_(identifier)
Hughes, H. P. N.; Clegg, C. W.; Robinson, M. A.; Crowder, R. M. (2012). "Agent-based modelling and simulation: The potential contribution to organizational psychology". Journal of Occupational and Organizational Psychology. 85 (3): 487–502. doi:10.1111/j.2044-8325.2012.02053.x. /wiki/Doi_(identifier)
Boroomand, Amin (2021). "Hard work, risk-taking, and diversity in a model of collective problem solving". Journal of Artificial Societies and Social Simulation. 24 (4). doi:10.18564/jasss.4704. https://www.jasss.org/24/4/10.html#:~:text=When%20problems%20are%20simpler%2C%20risk,to%20the%20increase%20in%20diversity
Crowder, R. M.; Robinson, M. A.; Hughes, H. P. N.; Sim, Y. W. (2012). "The development of an agent-based modeling framework for simulating engineering team work". IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans. 42 (6): 1425–1439. doi:10.1109/TSMCA.2012.2199304. S2CID 7985332. /wiki/Doi_(identifier)
"Application of Agent Technology to Traffic Simulation". United States Department of Transportation. May 15, 2007. Archived from the original on January 1, 2011. Retrieved October 31, 2007. https://web.archive.org/web/20110101034847/http://www.tfhrc.gov/advanc/agent.htm
Niazi, M.; Baig, A. R.; Hussain, A.; Bhatti, S. (2008). "Simulation of the research process" (PDF). In Mason, S.; Hill, R.; Mönch, L.; Rose, O.; Jefferson, T.; Fowler, J. W. (eds.). 2008 Winter Simulation Conference. pp. 1326–1334. doi:10.1109/WSC.2008.4736206. hdl:1893/3203. ISBN 978-1-4244-2707-9. S2CID 6597668. Archived (PDF) from the original on June 1, 2011. Retrieved June 7, 2009. 978-1-4244-2707-9
Niazi, Muaz A. (2008). "Self-organized customized content delivery architecture for ambient assisted environments" (PDF). Proceedings of the third international workshop on Use of P2P, grid and agents for the development of content networks. pp. 45–54. doi:10.1145/1384209.1384218. ISBN 9781605581552. S2CID 16916130. Archived from the original (PDF) on June 14, 2011. 9781605581552
Nasrinpour, Hamid Reza; Friesen, Marcia R.; McLeod, Robert D. (November 22, 2016). "An Agent-Based Model of Message Propagation in the Facebook Electronic Social Network". arXiv:1611.07454 [cs.SI]. /wiki/ArXiv_(identifier)
Niazi, Muaz; Hussain, Amir (March 2009). "Agent based Tools for Modeling and Simulation of Self-Organization in Peer-to-Peer, Ad-Hoc and other Complex Networks" (PDF). IEEE Communications Magazine. 47 (3): 163–173. doi:10.1109/MCOM.2009.4804403. hdl:1893/2423. S2CID 23449913. Archived from the original (PDF) on December 4, 2010. https://web.archive.org/web/20101204212920/http://www.cs.stir.ac.uk/~man/papers/niaziCommmag.pdf
Niazi, Muaz; Hussain, Amir (2011). "A Novel Agent-Based Simulation Framework for Sensing in Complex Adaptive Environments" (PDF). IEEE Sensors Journal. 11 (2): 404–412. arXiv:1708.05875. Bibcode:2011ISenJ..11..404N. doi:10.1109/JSEN.2010.2068044. hdl:1893/3398. S2CID 15367419. Archived from the original (PDF) on July 25, 2011. https://web.archive.org/web/20110725023733/http://cs.stir.ac.uk/~man/papers/Accepted_IEEESensorsAug2010.pdf
Sarker, R. A.; Ray, T. (2010). "Agent Based Evolutionary Approach: An Introduction". Agent-Based Evolutionary Search. Adaptation, Learning, and Optimization. Vol. 5. pp. 1–11. doi:10.1007/978-3-642-13425-8_1. ISBN 978-3-642-13424-1. 978-3-642-13424-1
Boroomand, Amin; Smaldino, Paul E. (2023). "Superiority bias and communication noise can enhance collective problem solving". Journal of Artificial Societies and Social Simulation. 26 (3). doi:10.18564/jasss.5154. https://doi.org/10.18564%2Fjasss.5154
Page, Scott E. (2008). Agent-Based Models (2 ed.). Archived from the original on February 10, 2018. Retrieved October 3, 2011. {{cite book}}: |work= ignored (help) http://www.dictionaryofeconomics.com/article?id=pde2008_A000218&edition=current&q=agent-based%20computational%20modeling&topicid=&result_number=1
Testfatsion, Leigh; Judd, Kenneth, eds. (May 2006). Handbook of Computational Economics. Vol. 2. Elsevier. p. 904. ISBN 978-0-444-51253-6. Archived from the original on March 6, 2012. Retrieved January 29, 2012. (Chapter preview) 978-0-444-51253-6
"Agents of change". The Economist. July 22, 2010. Archived from the original on January 23, 2011. Retrieved February 16, 2011. http://www.economist.com/node/16636121
"Agents of change". The Economist. July 22, 2010. Archived from the original on January 23, 2011. Retrieved February 16, 2011. http://www.economist.com/node/16636121
"A model approach". Nature. 460 (7256): 667. August 6, 2009. Bibcode:2009Natur.460Q.667.. doi:10.1038/460667a. PMID 19661863. https://doi.org/10.1038%2F460667a
Farmer & Foley 2009, p. 685. - Farmer, J. Doyne; Foley, Duncan (August 6, 2009). "The economy needs agent-based modelling". Nature. 460 (7256): 685–686. Bibcode:2009Natur.460..685F. doi:10.1038/460685a. PMID 19661896. S2CID 37676798. Archived from the original on July 25, 2020. Retrieved June 28, 2019. https://zenodo.org/record/897777
Farmer & Foley 2009, p. 686. - Farmer, J. Doyne; Foley, Duncan (August 6, 2009). "The economy needs agent-based modelling". Nature. 460 (7256): 685–686. Bibcode:2009Natur.460..685F. doi:10.1038/460685a. PMID 19661896. S2CID 37676798. Archived from the original on July 25, 2020. Retrieved June 28, 2019. https://zenodo.org/record/897777
Stefan, F., & Atman, A. (2015). Is there any connection between the network morphology and the fluctuations of the stock market index? Physica A: Statistical Mechanics and Its Applications, (419), 630-641.
Dawid, Herbert; Gatti, Delli (January 2018). "Agent-based macroeconomics". Handbook of Computational Economics. 4: 63–156. doi:10.1016/bs.hescom.2018.02.006. /wiki/Doi_(identifier)
Rand, William; Rust, Roland T. (July 2011). "Agent-based modeling in marketing: Guidelines for rigor". International Journal of Research in Marketing. 28 (3): 181–193. doi:10.1016/j.ijresmar.2011.04.002. /wiki/Doi_(identifier)
Aschwanden, G.D.P.A; Wullschleger, Tobias; Müller, Hanspeter; Schmitt, Gerhard (2009). "Evaluation of 3D city models using automatic placed urban agents". Automation in Construction. 22: 81–89. doi:10.1016/j.autcon.2011.07.001. /wiki/Doi_(identifier)
Brown, Daniel G.; Page, Scott E.; Zellner, Moira; Rand, William (2005). "Path dependence and the validation of agent-based spatial models of land use". International Journal of Geographical Information Science. 19 (2): 153–174. Bibcode:2005IJGIS..19..153B. doi:10.1080/13658810410001713399. https://doi.org/10.1080%2F13658810410001713399
Smetanin, Paul; Stiff, David (2015). Investing in Ontario's Public Infrastructure: A Prosperity at Risk Perspective, with an analysis of the Greater Toronto and Hamilton Area (PDF) (Report). The Canadian Centre for Economic Analysis. Archived (PDF) from the original on November 18, 2016. Retrieved November 17, 2016. http://www.cancea.ca/sites/economic-analysis.ca/files/reports/CANCEA%20Report%20-%20Investing%20in%20Ontario%27s%20Infrastructure%20FINAL%20Oct%202015%20Web.pdf
Yang, Xiaoliang; Zhou, Peng (April 2022). "Wealth inequality and social mobility: A simulation-based modelling approach". Journal of Economic Behavior & Organization. 196: 307–329. doi:10.1016/j.jebo.2022.02.012. hdl:10419/261231. S2CID 247143315. https://doi.org/10.1016%2Fj.jebo.2022.02.012
Butcher, Charity; Njonguo, Edwin (December 22, 2021). "Simulating Diplomacy: Learning Aid or Business as Usual?". Journal of Political Science Education. 17 (sup1): 185–203. doi:10.1080/15512169.2020.1803080. ISSN 1551-2169. /wiki/Doi_(identifier)
Gilbert, Nigel; Ahrweiler, Petra; Barbrook-Johnson, Pete; Narasimhan, Kavin Preethi; Wilkinson, Helen (2018). "Computational Modelling of Public Policy: Reflections on Practice". Journal of Artificial Societies and Social Simulation. 21 (1). doi:10.18564/jasss.3669. hdl:10044/1/102075. ISSN 1460-7425. http://jasss.soc.surrey.ac.uk/21/1/14.html
Berglund, Emily Zechman (November 2015). "Using Agent-Based Modeling for Water Resources Planning and Management". Journal of Water Resources Planning and Management. 141 (11): 04015025. doi:10.1061/(ASCE)WR.1943-5452.0000544. ISSN 0733-9496. Archived from the original on January 19, 2022. Retrieved September 18, 2021. http://ascelibrary.org/doi/10.1061/%28ASCE%29WR.1943-5452.0000544
Giuliani, M.; Castelletti, A. (July 2013). "Assessing the value of cooperation and information exchange in large water resources systems by agent-based optimization: MAS Framework for Large Water Resources Systems". Water Resources Research. 49 (7): 3912–3926. doi:10.1002/wrcr.20287. S2CID 128659104. https://doi.org/10.1002%2Fwrcr.20287
"Agent-Directed Simulation". Archived from the original on September 27, 2011. Retrieved August 9, 2011. http://www.eng.auburn.edu/~yilmaz/ADS.html
Hallerbach, S.; Xia, Y.; Eberle, U.; Koester, F. (2018). "Simulation-Based Identification of Critical Scenarios for Cooperative and Automated Vehicles". SAE International Journal of Connected and Automated Vehicles. 1 (2). SAE International: 93–106. doi:10.4271/2018-01-1066. https://www.researchgate.net/publication/324194968
Madrigal, Story by Alexis C. "Inside Waymo's Secret World for Training Self-Driving Cars". The Atlantic. Archived from the original on August 14, 2020. Retrieved August 14, 2020. https://www.theatlantic.com/technology/archive/2017/08/inside-waymos-secret-testing-and-simulation-facilities/537648/
Connors, J.; Graham, S.; Mailloux, L. (2018). "Cyber Synthetic Modeling for Vehicle-to-Vehicle Applications". International Conference on Cyber Warfare and Security. Academic Conferences International Limited: 594-XI.
Yang, Guoqing; Wu, Zhaohui; Li, Xiumei; Chen, Wei (2003). "SVE: Embedded agent based smart vehicle environment". Proceedings of the 2003 IEEE International Conference on Intelligent Transportation Systems. Vol. 2. pp. 1745–1749 vol.2. doi:10.1109/ITSC.2003.1252782. ISBN 0-7803-8125-4. S2CID 110177067. Archived from the original on January 31, 2022. Retrieved August 19, 2021. 0-7803-8125-4
Lysenko, Mikola; D'Souza, Roshan M. (2008). "A Framework for Megascale Agent Based Model Simulations on Graphics Processing Units". Journal of Artificial Societies and Social Simulation. 11 (4): 10. ISSN 1460-7425. Archived from the original on April 26, 2019. Retrieved April 16, 2019. http://jasss.soc.surrey.ac.uk/11/4/10.html
Gulyás, László; Szemes, Gábor; Kampis, George; de Back, Walter (2009). "A Modeler-Friendly API for ABM Partitioning". Proceedings of the ASME 2009 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference IDETC/CIE 2009. 2. San Diego, California, US: 219–226. Archived from the original on April 16, 2019. Retrieved April 16, 2019. https://proceedings.asmedigitalcollection.asme.org/proceeding.aspx?articleid=1649189
Collier, N.; North, M. (2013). "Parallel agent-based simulation with Repast for High Performance Computing". Simulation. 89 (10): 1215–1235. doi:10.1177/0037549712462620. S2CID 29255621. /wiki/Doi_(identifier)
Fujimoto, R. (2015). "Parallel and distributed simulation". 2015 Winter Simulation Conference (WSC). Huntington Beach, CA, US. pp. 45–59. doi:10.1109/WSC.2015.7408152. ISBN 978-1-4673-9743-8. S2CID 264924790. Archived from the original on February 4, 2023. Retrieved September 6, 2020.{{cite book}}: CS1 maint: location missing publisher (link) 978-1-4673-9743-8
Shook, E.; Wang, S.; Tang, W. (2013). "A communication-aware framework for parallel spatially explicit agent-based models". International Journal of Geographical Information Science. 27 (11). Taylor & Francis: 2160–2181. Bibcode:2013IJGIS..27.2160S. doi:10.1080/13658816.2013.771740. S2CID 41702653. /wiki/Bibcode_(identifier)
Jonas, E.; Pu, Q.; Venkataraman, S.; Stoica, I.; Recht, B. (2017). "Occupy the cloud: Distributed computing for the 99%". Proceedings of the 2017 Symposium on Cloud Computing. ACM. pp. 445–451. arXiv:1702.04024. doi:10.1145/3127479.3128601. ISBN 978-1-4503-5028-0. S2CID 854354. 978-1-4503-5028-0
Lysenko, Mikola; D'Souza, Roshan M. (2008). "A Framework for Megascale Agent Based Model Simulations on Graphics Processing Units". Journal of Artificial Societies and Social Simulation. 11 (4): 10. ISSN 1460-7425. Archived from the original on April 26, 2019. Retrieved April 16, 2019. http://jasss.soc.surrey.ac.uk/11/4/10.html
Isaac Rudomin; et al. (2006). "Large Crowds in the GPU". Monterrey Institute of Technology and Higher Education. Archived from the original on January 11, 2014. https://web.archive.org/web/20140111054342/https://sites.google.com/site/rudominisaac/shader-agents
Richmond, Paul; Romano, Daniela M. (2008). "Agent Based GPU, a Real-time 3D Simulation and Interactive Visualisation Framework for Massive Agent Based Modelling on the GPU" (PDF). Proceedings International Workshop on Super Visualisation (IWSV08). Archived from the original (PDF) on January 15, 2009. Retrieved April 27, 2012. https://wayback.archive-it.org/all/20090115220835/http://www.dcs.shef.ac.uk/~daniela/Paul_abgpu_IWSV_2008.pdf
Brown, Daniel G.; Riolo, Rick; Robinson, Derek T.; North, Michael; Rand, William (2005). "Spatial Process and Data Models: Toward Integration of agent-based models and GIS". Journal of Geographical Systems. 7 (1). Springer: 25–47. Bibcode:2005JGS.....7...25B. doi:10.1007/s10109-005-0148-5. hdl:2027.42/47930. S2CID 14059768. /wiki/Bibcode_(identifier)
Zhang, J.; Tong, L.; Lamberson, P.J.; Durazo-Arvizu, R.A.; Luke, A.; Shoham, D.A. (2015). "Leveraging social influence to address overweight and obesity using agent-based models: The role of adolescent social networks". Social Science & Medicine. 125. Elsevier BV: 203–213. doi:10.1016/j.socscimed.2014.05.049. ISSN 0277-9536. PMC 4306600. PMID 24951404. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4306600
Sargent, R. G. (2000). "Verification, validation and accreditation of simulation models". 2000 Winter Simulation Conference Proceedings (Cat. No.00CH37165). Vol. 1. pp. 50–59. CiteSeerX 10.1.1.17.438. doi:10.1109/WSC.2000.899697. ISBN 978-0-7803-6579-7. S2CID 57059217. 978-0-7803-6579-7
Klügl, F. (2008). "A validation methodology for agent-based simulations". Proceedings of the 2008 ACM symposium on Applied computing - SAC '08. pp. 39–43. doi:10.1145/1363686.1363696. ISBN 9781595937537. S2CID 9450992. 9781595937537
Fortino, G.; Garro, A.; Russo, W. (2005). "A Discrete-Event Simulation Framework for the Validation of Agent-Based and Multi-Agent Systems" (PDF). Archived (PDF) from the original on June 26, 2011. Retrieved September 27, 2009. {{cite journal}}: Cite journal requires |journal= (help) http://www-lia.deis.unibo.it/books/woa2005/papers/11.pdf
Tesfatsion, Leigh. "Empirical Validation: Agent-Based Computational Economics". Iowa State University. Archived from the original on June 26, 2020. Retrieved June 24, 2020. https://www2.econ.iastate.edu/tesfatsi/empvalid.htm
Niazi, Muaz; Hussain, Amir; Kolberg, Mario. "Verification and Validation of Agent-Based Simulations using the VOMAS approach" (PDF). Proceedings of the Third Workshop on Multi-Agent Systems and Simulation '09 (MASS '09), as Part of MALLOW 09, Sep 7–11, 2009, Torino, Italy. Archived from the original (PDF) on June 14, 2011. https://web.archive.org/web/20110614052017/http://www.cs.stir.ac.uk/~man/papers/VOMAS_CRV_aug_05_09_Muazv2.pdf
Niazi, Muaz; Siddique, Qasim; Hussain, Amir; Kolberg, Mario (April 11–15, 2010). "Verification & validation of an agent-based forest fire simulation model" (PDF). Proceedings of the 2010 Spring Simulation Multiconference. pp. 142–149. doi:10.1145/1878537.1878539. ISBN 978-1-4503-0069-8. Archived from the original (PDF) on July 25, 2011. 978-1-4503-0069-8
Niazi, Muaz A. K. (June 11, 2011). "Towards A Novel Unified Framework for Developing Formal, Network and Validated Agent-Based Simulation Models of Complex Adaptive Systems". University of Stirling. hdl:1893/3365. {{cite journal}}: Cite journal requires |journal= (help) PhD Thesis /wiki/University_of_Stirling
Onggo, B.S.; Karatas, M. (2016). "Test-driven simulation modelling: A case study using agent-based maritime search-operation simulation". European Journal of Operational Research. 254 (2): 517–531. doi:10.1016/j.ejor.2016.03.050. Archived from the original on June 30, 2020. https://www.sciencedirect.com/science/article/abs/pii/S0377221716301965