For a finite graph G = ( V , E ) {\displaystyle G=(V,E)} with vertex set V = { v 1 , v 2 , … , v n } {\displaystyle V=\{v_{1},v_{2},\ldots ,v_{n}\}} , a vertex coloring is a function κ : V → C {\displaystyle \kappa :V\to C} where C {\displaystyle C} is a set of colors. A vertex coloring is called proper if all adjacent vertices are assigned distinct colors (i.e., { i , j } ∈ E ⟹ κ ( i ) ≠ κ ( j ) {\displaystyle \{i,j\}\in E\implies \kappa (i)\neq \kappa (j)} ). The chromatic symmetric function denoted X G ( x 1 , x 2 , … ) {\displaystyle X_{G}(x_{1},x_{2},\ldots )} is defined to be the weight generating function of proper vertex colorings of G {\displaystyle G} :23 X G ( x 1 , x 2 , … ) := ∑ κ : V → N proper x κ ( v 1 ) x κ ( v 2 ) ⋯ x κ ( v n ) {\displaystyle X_{G}(x_{1},x_{2},\ldots ):=\sum _{\underset {\text{proper}}{\kappa :V\to \mathbb {N} }}x_{\kappa (v_{1})}x_{\kappa (v_{2})}\cdots x_{\kappa (v_{n})}}
For λ {\displaystyle \lambda } a partition, let m λ {\displaystyle m_{\lambda }} be the monomial symmetric polynomial associated to λ {\displaystyle \lambda } .
Consider the complete graph K n {\displaystyle K_{n}} on n {\displaystyle n} vertices:
Thus, X K n ( x 1 , … , x n ) = n ! x 1 ⋯ x n = n ! m ( 1 , … , 1 ) {\displaystyle X_{K_{n}}(x_{1},\ldots ,x_{n})=n!x_{1}\cdots x_{n}=n!m_{(1,\ldots ,1)}}
Consider the path graph P 3 {\displaystyle P_{3}} of length 3 {\displaystyle 3} :
Altogether, the chromatic symmetric function of P 3 {\displaystyle P_{3}} is then given by:4 X P 3 ( x 1 , x 2 , x 3 ) = 6 x 1 x 2 x 3 + x 1 2 x 2 + x 1 x 2 2 + x 1 2 x 3 + x 1 x 3 2 + x 2 2 x 3 + x 2 x 3 2 = 6 m ( 1 , 1 , 1 ) + m ( 1 , 2 ) {\displaystyle X_{P_{3}}(x_{1},x_{2},x_{3})=6x_{1}x_{2}x_{3}+x_{1}^{2}x_{2}+x_{1}x_{2}^{2}+x_{1}^{2}x_{3}+x_{1}x_{3}^{2}+x_{2}^{2}x_{3}+x_{2}x_{3}^{2}=6m_{(1,1,1)}+m_{(1,2)}}
There are a number of outstanding questions regarding the chromatic symmetric function which have received substantial attention in the literature surrounding them.
For a partition λ {\displaystyle \lambda } , let e λ {\displaystyle e_{\lambda }} be the elementary symmetric function associated to λ {\displaystyle \lambda } .
A partially ordered set P {\displaystyle P} is called ( 3 + 1 ) {\displaystyle (3+1)} -free if it does not contain a subposet isomorphic to the direct sum of the 3 {\displaystyle 3} element chain and the 1 {\displaystyle 1} element chain. The incomparability graph inc ( P ) {\displaystyle {\text{inc}}(P)} of a poset P {\displaystyle P} is the graph with vertices given by the elements of P {\displaystyle P} which includes an edge between two vertices if and only if their corresponding elements in P {\displaystyle P} are incomparable.
Conjecture (Stanley–Stembridge) Let G {\displaystyle G} be the incomparability graph of a ( 3 + 1 ) {\textstyle (3+1)} -free poset, then X G {\textstyle X_{G}} is e {\displaystyle e} -positive.10
A weaker positivity result is known for the case of expansions into the basis of Schur functions.
Theorem (Gasharov) Let G {\displaystyle G} be the incomparability graph of a ( 3 + 1 ) {\textstyle (3+1)} -free poset, then X G {\textstyle X_{G}} is s {\displaystyle s} -positive.11
In the proof of the theorem above, there is a combinatorial formula for the coefficients of the Schur expansion given in terms of P {\displaystyle P} -tableaux which are a generalization of semistandard Young tableaux instead labelled with the elements of P {\displaystyle P} .
There are a number of generalizations of the chromatic symmetric function:
Stanley, R.P. (1995). "A Symmetric Function Generalization of the Chromatic Polynomial of a Graph". Advances in Mathematics. 111 (1): 166–194. doi:10.1006/aima.1995.1020. ISSN 0001-8708. /wiki/Richard_P._Stanley ↩
Saliola, Franco (October 15, 2022). "Lectures on Symmetric Functions with a view towards Hessenberg varieties — Draft" (PDF). Archived (PDF) from the original on October 18, 2022. Retrieved April 27, 2024. https://www.birs.ca/workshops/2022/22w5143/files/Franco%20Saliola/Saliola-Lectures-on-Chromatic-Symmetric-Functions.pdf ↩
Gasharov, Vesselin (1996). "Incomparability graphs of (3+1)-free posets are s-positive" (PDF). Discrete Mathematics. 157 (1–3): 193–197. doi:10.1016/S0012-365X(96)83014-7. https://core.ac.uk/download/pdf/82067232.pdf ↩
Sazdanovic, Radmila; Yip, Martha (2018-02-01). "A categorification of the chromatic symmetric function". Journal of Combinatorial Theory. Series A. 154: 218–246. arXiv:1506.03133. doi:10.1016/j.jcta.2017.08.014. ISSN 0097-3165. https://doi.org/10.1016%2Fj.jcta.2017.08.014 ↩
Chandler, Alex; Sazdanovic, Radmila; Stella, Salvatore; Yip, Martha (2023-09-01). "On the strength of chromatic symmetric homology for graphs". Advances in Applied Mathematics. 150: 102559. arXiv:1911.13297. doi:10.1016/j.aam.2023.102559. ISSN 0196-8858. https://www.sciencedirect.com/science/article/pii/S0196885823000775 ↩
Crew, Logan; Spirkl, Sophie (2020). "A Deletion-Contraction Relation for the Chromatic Symmetric Function". European Journal of Combinatorics. 89: 103143. arXiv:1910.11859. doi:10.1016/j.ejc.2020.103143. /wiki/European_Journal_of_Combinatorics ↩
Ciliberti, Azzurra (2024-01-01). "A deletion–contraction long exact sequence for chromatic symmetric homology". European Journal of Combinatorics. 115: 103788. arXiv:2211.00699. doi:10.1016/j.ejc.2023.103788. ISSN 0195-6698. https://www.sciencedirect.com/science/article/pii/S0195669823001051 ↩
Shareshian, John; Wachs, Michelle L. (June 4, 2016). "Chromatic quasisymmetric functions". Advances in Mathematics. 295: 497–551. arXiv:1405.4629. doi:10.1016/j.aim.2015.12.018. ISSN 0001-8708. /wiki/Michelle_L._Wachs ↩