Neutrinos are conventionally produced in weak decays. Weak beta decays normally produce one electron (or positron), emit an antineutrino (or neutrino) and increase (or decrease) the nucleus' proton number
Z
{\displaystyle Z}
by one. The nucleus' mass (i.e. binding energy) is then lower and thus more favorable. There exist a number of elements that can decay into a nucleus of lower mass, but they cannot emit one electron only because the resulting nucleus is kinematically (that is, in terms of energy) not favorable (its energy would be higher). These nuclei can only decay by emitting two electrons (that is, via double beta decay). There are about a dozen confirmed cases of nuclei that can only decay via double beta decay. The corresponding decay equation is:
(
A
,
Z
)
→
(
A
,
Z
+
2
)
+
2
e
−
+
2
ν
¯
e
{\displaystyle (A,Z)\rightarrow (A,Z+2)+2e^{-}+2{\bar {\nu }}_{e}}
.
If the nature of the neutrinos is Majorana, then they can be emitted and absorbed in the same process without showing up in the corresponding final state. As Dirac particles, both the neutrinos produced by the decay of the W bosons would be emitted, and not absorbed after.
The simplest decay process is known as the light neutrino exchange. It features one neutrino emitted by one nucleon and absorbed by another nucleon (see figure to the right). In the final state, the only remaining parts are the nucleus (with its changed proton number
Z
{\displaystyle Z}
) and two electrons:
(
A
,
Z
)
→
(
A
,
Z
+
2
)
+
2
e
−
{\displaystyle (A,Z)\rightarrow (A,Z+2)+2e^{-}}
The two electrons are emitted quasi-simultaneously.
The two resulting electrons are then the only emitted particles in the final state and must carry approximately the difference of the sums of the binding energies of the two nuclei before and after the process as their kinetic energy. The heavy nuclei do not carry significant kinetic energy.
where
G
0
ν
{\displaystyle G^{0\nu }}
denotes the phase space factor,
|
M
0
ν
|
2
{\displaystyle \left|M^{0\nu }\right|^{2}}
the (squared) matrix element of this nuclear decay process (according to the Feynman diagram), and
⟨
m
β
β
⟩
2
{\displaystyle \langle m_{\beta \beta }\rangle ^{2}}
the square of the effective Majorana mass.
where
m
i
{\displaystyle m_{i}}
are the Majorana neutrino masses (three neutrinos
ν
i
{\displaystyle \nu _{i}}
) and
U
e
i
{\displaystyle U_{ei}}
the elements of the neutrino mixing matrix
U
{\displaystyle U}
(see PMNS matrix). Contemporary experiments to find neutrinoless double beta decays (see section on experiments) aim at both the proof of the Majorana nature of neutrinos and the measurement of this effective Majorana mass
⟨
m
β
β
⟩
{\displaystyle \langle m_{\beta \beta }\rangle }
(can only be done if the decay is actually generated by the neutrino masses).
The nuclear matrix element (NME)
|
M
0
ν
|
{\displaystyle \left|M^{0\nu }\right|}
cannot be measured independently;[why?] it must, but also can, be calculated. The calculation itself relies on sophisticated nuclear many-body theories and there exist different methods to do this. The NME
|
M
0
ν
|
{\displaystyle \left|M^{0\nu }\right|}
differs also from nucleus to nucleus (i.e. chemical element to chemical element). Today, the calculation of the NME is a significant problem and it has been treated by different authors in different ways. One question is whether to treat the range of obtained values for
|
M
0
ν
|
{\displaystyle \left|M^{0\nu }\right|}
as the theoretical uncertainty and whether this is then to be understood as a statistical uncertainty. Different approaches are being chosen here. The obtained values for
|
M
0
ν
|
{\displaystyle \left|M^{0\nu }\right|}
often vary by factors of 2 up to about 5. Typical values lie in the range of from about 0.9 to 14, depending on the decaying nucleus/element.
Lastly, the phase-space factor
G
0
ν
{\displaystyle G^{0\nu }}
must also be calculated. It depends on the total released kinetic energy (
Q
=
M
nucleus
before
−
M
nucleus
after
−
2
m
electron
{\displaystyle Q=M_{\text{nucleus}}^{\text{before}}-M_{\text{nucleus}}^{\text{after}}-2m_{\text{electron}}}
, i.e. "
Q
{\displaystyle Q}
-value") and the atomic number
Z
{\displaystyle Z}
. Methods use Dirac wave functions, finite nuclear sizes and electron screening. There exist high-precision results for
G
0
ν
{\displaystyle G^{0\nu }}
for various nuclei, ranging from about 0.23 (for
52
128
T
e
→
54
128
X
e
{\displaystyle \mathrm {^{128}_{52}Te\rightarrow _{54}^{128}Xe} }
), and 0.90 (
32
76
G
e
→
34
76
S
e
{\displaystyle \mathrm {^{76}_{32}Ge\rightarrow _{34}^{76}Se} }
) to about 24.14 (
60
150
N
d
→
62
150
S
m
{\displaystyle \mathrm {^{150}_{60}Nd\rightarrow _{62}^{150}Sm} }
).
It is believed that, if neutrinoless double beta decay is found under certain conditions (decay rate compatible with predictions based on experimental knowledge about neutrino masses and mixing), this would indeed "likely" point at Majorana neutrinos as the main mediator (and not other sources of new physics). There are 35 nuclei that can undergo neutrinoless double beta decay (according to the aforementioned decay conditions).
Nine different candidates of nuclei are being considered in experiments to confirm neutrinoless double beta-decay:
48
C
a
,
76
G
e
,
82
S
e
,
96
Z
r
,
100
M
o
,
116
C
d
,
130
T
e
,
136
X
e
,
150
N
d
{\displaystyle \mathrm {^{48}Ca,^{76}Ge,^{82}Se,^{96}Zr,^{100}Mo,^{116}Cd,^{130}Te,^{136}Xe,^{150}Nd} }
. They all have arguments for and against their use in an experiment. Factors to be included and revised are natural abundance, reasonably priced enrichment, and a well understood and controlled experimental technique. The higher the
Q
{\displaystyle Q}
-value, the better are the chances of a discovery, in principle. The phase-space factor
G
0
ν
{\displaystyle G^{0\nu }}
, and thus the decay rate, grows with
Q
5
{\displaystyle Q^{5}}
.
Experimentally of interest and thus measured is the sum of the kinetic energies of the two emitted electrons. It should equal the
Q
{\displaystyle Q}
-value of the respective nucleus for neutrinoless double beta emission.
The table shows a summary of the currently best limits on the lifetime of 0νββ. From this, it can be deduced that neutrinoless double beta decay is an extremely rare process, if it occurs at all.
Experimental limits (at least 90% Neutrinoless double beta decay has not yet been found.
The muon decays as
μ
+
→
e
+
+
ν
e
+
ν
¯
μ
{\displaystyle \mu ^{+}\to e^{+}+\nu _{e}+{\overline {\nu }}_{\mu }}
and
μ
−
→
e
−
+
ν
¯
e
+
ν
μ
{\displaystyle \mu ^{-}\to e^{-}+{\overline {\nu }}_{e}+\nu _{\mu }}
. Decays without neutrino emission, such as
μ
+
→
e
+
+
γ
{\displaystyle \mu ^{+}\to e^{+}+\gamma }
,
μ
−
→
e
−
+
γ
{\displaystyle \mu ^{-}\to e^{-}+\gamma }
,
μ
+
→
e
+
+
e
−
+
e
+
{\displaystyle \mu ^{+}\to e^{+}+e^{-}+e^{+}}
and
μ
−
→
e
−
+
e
+
+
e
−
{\displaystyle \mu ^{-}\to e^{-}+e^{+}+e^{-}}
are so unlikely that they are considered prohibited and their observation would be considered evidence of new physics. A number of experiments are pursuing this path such as Mu to E Gamma, Comet, and Mu2e for
μ
+
→
e
+
γ
{\displaystyle \mu ^{+}\to e^{+}\gamma }
and Mu3e for
μ
+
→
e
+
e
−
e
+
{\displaystyle \mu ^{+}\to e^{+}e^{-}e^{+}}
.
Neutrinoless tau conversion in the form
τ
→
3
μ
{\displaystyle \tau \to 3\mu }
has been searched for by the CMS experiment.
Grotz, K.; Klapdor, H. V. (1990). The weak interaction in nuclear, particle, and astrophysics. Hilger. ISBN 978-0-85274-313-3. 978-0-85274-313-3
Oberauer, Lothar; Ianni, Aldo; Serenelli, Aldo (2020). Solar neutrino physics : the interplay between particle physics and astronomy. Wiley-VCH. pp. 120–127. ISBN 978-3-527-41274-7. 978-3-527-41274-7
Oberauer, Lothar; Ianni, Aldo; Serenelli, Aldo (2020). Solar neutrino physics : the interplay between particle physics and astronomy. Wiley-VCH. pp. 120–127. ISBN 978-3-527-41274-7. 978-3-527-41274-7
Rodejohann, Werner (2 May 2012). "Neutrino-less double beta decay and particle physics". International Journal of Modern Physics E. 20 (9): 1833–1930. arXiv:1106.1334. doi:10.1142/S0218301311020186. S2CID 119102859. /wiki/ArXiv_(identifier)
Deppisch, Frank F. (2019). A modern introduction to neutrino physics. Morgan & Claypool Publishers. ISBN 978-1-64327-679-3. 978-1-64327-679-3
Patrignani et al. (Particle Data Group), C. (October 2016). "Review of Particle Physics". Chinese Physics C. 40 (10): 647. Bibcode:2016ChPhC..40j0001P. doi:10.1088/1674-1137/40/10/100001. hdl:10044/1/57200. S2CID 125766528. http://bib-pubdb1.desy.de/search?p=id:%22PUBDB-2016-04859%22
Majorana, Ettore (1937). "Teoria simmetrica dell'elettrone e del positrone". Il Nuovo Cimento. 14 (4): 171–184. Bibcode:1937NCim...14..171M. doi:10.1007/BF02961314. S2CID 18973190. /wiki/Bibcode_(identifier)
Bilenky, S. M.; Giunti, C. (11 February 2015). "Neutrinoless double-beta decay: A probe of physics beyond the Standard Model". International Journal of Modern Physics A. 30 (4n05): 1530001. arXiv:1411.4791. Bibcode:2015IJMPA..3030001B. doi:10.1142/S0217751X1530001X. S2CID 53459820. /wiki/ArXiv_(identifier)
Majorana, Ettore (1937). "Teoria simmetrica dell'elettrone e del positrone". Il Nuovo Cimento. 14 (4): 171–184. Bibcode:1937NCim...14..171M. doi:10.1007/BF02961314. S2CID 18973190. /wiki/Bibcode_(identifier)
Furry, W. H. (15 December 1939). "On Transition Probabilities in Double Beta-Disintegration". Physical Review. 56 (12): 1184–1193. Bibcode:1939PhRv...56.1184F. doi:10.1103/PhysRev.56.1184. /wiki/Bibcode_(identifier)
Furry, W. H. (15 December 1939). "On Transition Probabilities in Double Beta-Disintegration". Physical Review. 56 (12): 1184–1193. Bibcode:1939PhRv...56.1184F. doi:10.1103/PhysRev.56.1184. /wiki/Bibcode_(identifier)
Grotz, K.; Klapdor, H. V. (1990). The weak interaction in nuclear, particle, and astrophysics. Hilger. ISBN 978-0-85274-313-3. 978-0-85274-313-3
Cremonesi, Oliviero (April 2003). "Neutrinoless double beta decay: Present and future". Nuclear Physics B - Proceedings Supplements. 118: 287–296. arXiv:hep-ex/0210007. Bibcode:2003NuPhS.118..287C. doi:10.1016/S0920-5632(03)01331-8. S2CID 7298714. /wiki/ArXiv_(identifier)
Patrignani et al. (Particle Data Group), C. (October 2016). "Review of Particle Physics". Chinese Physics C. 40 (10): 647. Bibcode:2016ChPhC..40j0001P. doi:10.1088/1674-1137/40/10/100001. hdl:10044/1/57200. S2CID 125766528. http://bib-pubdb1.desy.de/search?p=id:%22PUBDB-2016-04859%22
Oberauer, Lothar; Ianni, Aldo; Serenelli, Aldo (2020). Solar neutrino physics : the interplay between particle physics and astronomy. Wiley-VCH. pp. 120–127. ISBN 978-3-527-41274-7. 978-3-527-41274-7
Oberauer, Lothar; Ianni, Aldo; Serenelli, Aldo (2020). Solar neutrino physics : the interplay between particle physics and astronomy. Wiley-VCH. pp. 120–127. ISBN 978-3-527-41274-7. 978-3-527-41274-7
Grotz, K.; Klapdor, H. V. (1990). The weak interaction in nuclear, particle, and astrophysics. Hilger. ISBN 978-0-85274-313-3. 978-0-85274-313-3
Oberauer, Lothar; Ianni, Aldo; Serenelli, Aldo (2020). Solar neutrino physics : the interplay between particle physics and astronomy. Wiley-VCH. pp. 120–127. ISBN 978-3-527-41274-7. 978-3-527-41274-7
Artusa, D. R.; Avignone, F. T.; Azzolini, O.; Balata, M.; Banks, T. I.; Bari, G.; Beeman, J.; Bellini, F.; Bersani, A.; Biassoni, M. (15 October 2014). "Exploring the neutrinoless double beta decay in the inverted neutrino hierarchy with bolometric detectors". The European Physical Journal C. 74 (10): 3096. arXiv:1404.4469. Bibcode:2014EPJC...74.3096A. doi:10.1140/epjc/s10052-014-3096-8. https://doi.org/10.1140%2Fepjc%2Fs10052-014-3096-8
Rodejohann, Werner (2 May 2012). "Neutrino-less double beta decay and particle physics". International Journal of Modern Physics E. 20 (9): 1833–1930. arXiv:1106.1334. doi:10.1142/S0218301311020186. S2CID 119102859. /wiki/ArXiv_(identifier)
Rodejohann, Werner (2 May 2012). "Neutrino-less double beta decay and particle physics". International Journal of Modern Physics E. 20 (9): 1833–1930. arXiv:1106.1334. doi:10.1142/S0218301311020186. S2CID 119102859. /wiki/ArXiv_(identifier)
Rodejohann, Werner (2 May 2012). "Neutrino-less double beta decay and particle physics". International Journal of Modern Physics E. 20 (9): 1833–1930. arXiv:1106.1334. doi:10.1142/S0218301311020186. S2CID 119102859. /wiki/ArXiv_(identifier)
Rodejohann, Werner (2 May 2012). "Neutrino-less double beta decay and particle physics". International Journal of Modern Physics E. 20 (9): 1833–1930. arXiv:1106.1334. doi:10.1142/S0218301311020186. S2CID 119102859. /wiki/ArXiv_(identifier)
Schechter, J.; Valle, J. W. F. (1 June 1982). "Neutrinoless double-beta decay in SU(2)×U(1) theories". Physical Review D. 25 (11): 2951–2954. Bibcode:1982PhRvD..25.2951S. doi:10.1103/PhysRevD.25.2951. hdl:10550/47205. /wiki/Bibcode_(identifier)
Grotz, K.; Klapdor, H. V. (1990). The weak interaction in nuclear, particle, and astrophysics. Hilger. ISBN 978-0-85274-313-3. 978-0-85274-313-3
Rodejohann, Werner (2 May 2012). "Neutrino-less double beta decay and particle physics". International Journal of Modern Physics E. 20 (9): 1833–1930. arXiv:1106.1334. doi:10.1142/S0218301311020186. S2CID 119102859. /wiki/ArXiv_(identifier)
Grotz, K.; Klapdor, H. V. (1990). The weak interaction in nuclear, particle, and astrophysics. Hilger. ISBN 978-0-85274-313-3. 978-0-85274-313-3
Artusa, D. R.; Avignone, F. T.; Azzolini, O.; Balata, M.; Banks, T. I.; Bari, G.; Beeman, J.; Bellini, F.; Bersani, A.; Biassoni, M. (15 October 2014). "Exploring the neutrinoless double beta decay in the inverted neutrino hierarchy with bolometric detectors". The European Physical Journal C. 74 (10): 3096. arXiv:1404.4469. Bibcode:2014EPJC...74.3096A. doi:10.1140/epjc/s10052-014-3096-8. https://doi.org/10.1140%2Fepjc%2Fs10052-014-3096-8
Grotz & Klapdor 1990, p. 86. - Grotz, K.; Klapdor, H. V. (1990). The weak interaction in nuclear, particle, and astrophysics. Hilger. ISBN 978-0-85274-313-3.
Patrignani et al. (Particle Data Group), C. (October 2016). "Review of Particle Physics". Chinese Physics C. 40 (10): 647. Bibcode:2016ChPhC..40j0001P. doi:10.1088/1674-1137/40/10/100001. hdl:10044/1/57200. S2CID 125766528. http://bib-pubdb1.desy.de/search?p=id:%22PUBDB-2016-04859%22
Bilenky, S. M.; Giunti, C. (11 February 2015). "Neutrinoless double-beta decay: A probe of physics beyond the Standard Model". International Journal of Modern Physics A. 30 (4n05): 1530001. arXiv:1411.4791. Bibcode:2015IJMPA..3030001B. doi:10.1142/S0217751X1530001X. S2CID 53459820. /wiki/ArXiv_(identifier)
Bilenky, S. M.; Giunti, C. (11 February 2015). "Neutrinoless double-beta decay: A probe of physics beyond the Standard Model". International Journal of Modern Physics A. 30 (4n05): 1530001. arXiv:1411.4791. Bibcode:2015IJMPA..3030001B. doi:10.1142/S0217751X1530001X. S2CID 53459820. /wiki/ArXiv_(identifier)
Bilenky, S.M; Grifols, J.A (December 2002). "The possible test of the calculations of nuclear matrix elements of the (ββ)0ν-decay". Physics Letters B. 550 (3–4): 154–159. arXiv:hep-ph/0211101. Bibcode:2002PhLB..550..154B. doi:10.1016/S0370-2693(02)02978-7. https://doi.org/10.1016%2FS0370-2693%2802%2902978-7
Bilenky, S. M.; Giunti, C. (11 February 2015). "Neutrinoless double-beta decay: A probe of physics beyond the Standard Model". International Journal of Modern Physics A. 30 (4n05): 1530001. arXiv:1411.4791. Bibcode:2015IJMPA..3030001B. doi:10.1142/S0217751X1530001X. S2CID 53459820. /wiki/ArXiv_(identifier)
Bilenky, S. M.; Giunti, C. (11 February 2015). "Neutrinoless double-beta decay: A probe of physics beyond the Standard Model". International Journal of Modern Physics A. 30 (4n05): 1530001. arXiv:1411.4791. Bibcode:2015IJMPA..3030001B. doi:10.1142/S0217751X1530001X. S2CID 53459820. /wiki/ArXiv_(identifier)
Bilenky, S. M.; Giunti, C. (11 February 2015). "Neutrinoless double-beta decay: A probe of physics beyond the Standard Model". International Journal of Modern Physics A. 30 (4n05): 1530001. arXiv:1411.4791. Bibcode:2015IJMPA..3030001B. doi:10.1142/S0217751X1530001X. S2CID 53459820. /wiki/ArXiv_(identifier)
Bilenky, S. M.; Giunti, C. (11 February 2015). "Neutrinoless double-beta decay: A probe of physics beyond the Standard Model". International Journal of Modern Physics A. 30 (4n05): 1530001. arXiv:1411.4791. Bibcode:2015IJMPA..3030001B. doi:10.1142/S0217751X1530001X. S2CID 53459820. /wiki/ArXiv_(identifier)
Bilenky, S. M.; Giunti, C. (11 February 2015). "Neutrinoless double-beta decay: A probe of physics beyond the Standard Model". International Journal of Modern Physics A. 30 (4n05): 1530001. arXiv:1411.4791. Bibcode:2015IJMPA..3030001B. doi:10.1142/S0217751X1530001X. S2CID 53459820. /wiki/ArXiv_(identifier)
Bilenky, S. M.; Giunti, C. (11 February 2015). "Neutrinoless double-beta decay: A probe of physics beyond the Standard Model". International Journal of Modern Physics A. 30 (4n05): 1530001. arXiv:1411.4791. Bibcode:2015IJMPA..3030001B. doi:10.1142/S0217751X1530001X. S2CID 53459820. /wiki/ArXiv_(identifier)
Rodejohann, Werner (2 May 2012). "Neutrino-less double beta decay and particle physics". International Journal of Modern Physics E. 20 (9): 1833–1930. arXiv:1106.1334. doi:10.1142/S0218301311020186. S2CID 119102859. /wiki/ArXiv_(identifier)
Rodejohann, Werner (2 May 2012). "Neutrino-less double beta decay and particle physics". International Journal of Modern Physics E. 20 (9): 1833–1930. arXiv:1106.1334. doi:10.1142/S0218301311020186. S2CID 119102859. /wiki/ArXiv_(identifier)
Rodejohann, Werner (2 May 2012). "Neutrino-less double beta decay and particle physics". International Journal of Modern Physics E. 20 (9): 1833–1930. arXiv:1106.1334. doi:10.1142/S0218301311020186. S2CID 119102859. /wiki/ArXiv_(identifier)
Rodejohann, Werner (2 May 2012). "Neutrino-less double beta decay and particle physics". International Journal of Modern Physics E. 20 (9): 1833–1930. arXiv:1106.1334. doi:10.1142/S0218301311020186. S2CID 119102859. /wiki/ArXiv_(identifier)
Rodejohann, Werner (2 May 2012). "Neutrino-less double beta decay and particle physics". International Journal of Modern Physics E. 20 (9): 1833–1930. arXiv:1106.1334. doi:10.1142/S0218301311020186. S2CID 119102859. /wiki/ArXiv_(identifier)
Bilenky, S. M.; Giunti, C. (11 February 2015). "Neutrinoless double-beta decay: A probe of physics beyond the Standard Model". International Journal of Modern Physics A. 30 (4n05): 1530001. arXiv:1411.4791. Bibcode:2015IJMPA..3030001B. doi:10.1142/S0217751X1530001X. S2CID 53459820. /wiki/ArXiv_(identifier)
"The Heidelberg-Moscow Experiment with enriched 76Ge". Prof.Dr.H.V.Klapdor-Kleingrothaus. Retrieved 16 July 2020. http://www.klapdor-k.de/Theory%20of%20Experiments/HDMDBD/HeiMos.htm#:~:text=The%20HEIDELBERG%2DMOSCOW%2DExperiment%20is,beta%20transitions%20in%20one%20nucleus.
"The Heidelberg-Moscow Experiment with enriched 76Ge". Prof.Dr.H.V.Klapdor-Kleingrothaus. Retrieved 16 July 2020. http://www.klapdor-k.de/Theory%20of%20Experiments/HDMDBD/HeiMos.htm#:~:text=The%20HEIDELBERG%2DMOSCOW%2DExperiment%20is,beta%20transitions%20in%20one%20nucleus.
GERDA Collaboration; Agostini, M.; Araujo, G. R.; Bakalyarov, A. M.; Balata, M.; Barabanov, I.; Baudis, L.; Bauer, C.; Bellotti, E. (2020-12-17), "Final Results of GERDA on the Search for Neutrinoless Double-$\ensuremath{\beta}$ Decay", Physical Review Letters, 125 (25): 252502, arXiv:2009.06079, doi:10.1103/PhysRevLett.125.252502, PMID 33416389, S2CID 221655689 /wiki/ArXiv_(identifier)
Majorana Collaboration; Arnquist, I. J.; Avignone, F. T.; Barabash, A. S.; Barton, C. J.; Barton, P. J.; Bhimani, K. H.; Blalock, E.; Bos, B.; Busch, M.; Buuck, M.; Caldwell, T. S.; Chan, Y-D.; Christofferson, C. D.; Chu, P.-H. (2023-02-10). "Final Result of the Majorana Demonstrator's Search for Neutrinoless Double-$\ensuremath{\beta}$ Decay in $^{76}\mathrm{Ge}$". Physical Review Letters. 130 (6): 062501. arXiv:2207.07638. doi:10.1103/PhysRevLett.130.062501. PMID 36827565. S2CID 256805278. https://link.aps.org/doi/10.1103/PhysRevLett.130.062501
Azzolini, O. and Beeman, J. W. and Bellini, F. and Beretta, M. and Biassoni, M. and Brofferio, C. and Bucci, C. and Capelli, S. and Caracciolo, V. and Cardani, L. and Carniti, P. and Casali, N. and Chiesa, D. and Clemenza, M. and Colantoni, I. and Cremonesi, O. and Cruciani, A. and D'Addabbo, A. and Dafinei, I. and De Dominicis, F. and Di Domizio, S. and Ferroni, F. and Gironi, L. and Giuliani, A. and Gorla, P. and Gotti, C. and Keppel, G. and Martinez, M. and Nagorny, S. and Nastasi, M. and Nisi, S. and Nones, C. and Orlandi, D. and Pagnanini, L. and Pallavicini, M. and Pattavina, L. and Pavan, M. and Pessina, G. and Pettinacci, V. and Pirro, S. and Pozzi, S. and Previtali, E. and Puiu, A. and Rusconi, C. and Sch\"affner, K. and Tomei, C. and Vignati, M. and Zolotarova, A. S. (2022-09-06), "Final Result on the Neutrinoless Double Beta Decay of
82
S
e
{\displaystyle \mathrm {^{82}Se} }
", Physical Review Letters, 129 (11): 111801, arXiv:2206.05130, doi:10.1103/PhysRevLett.129.111801, hdl:11573/1658118, PMID 36154394, S2CID 252154054, retrieved 2022-09-11{{citation}}: CS1 maint: multiple names: authors list (link) https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.129.111801
CUORE Collaboration; Adams, D. Q.; Alduino, C.; Alfonso, K.; Avignone, F. T.; Azzolini, O.; Bari, G.; Bellini, F.; Benato, G.; Beretta, M.; Biassoni, M.; Branca, A.; Brofferio, C.; Bucci, C.; Camilleri, J. (2022-11-23). "New Direct Limit on Neutrinoless Double Beta Decay Half-Life of $^{128}\mathrm{Te}$ with CUORE". Physical Review Letters. 129 (22): 222501. arXiv:2205.03132. doi:10.1103/PhysRevLett.129.222501. OSTI 1924468. PMID 36493444. S2CID 253876939. https://link.aps.org/doi/10.1103/PhysRevLett.129.222501
Anton, G.; Badhrees, I.; Barbeau, P. S.; Beck, D.; Belov, V.; Bhatta, T.; Breidenbach, M.; Brunner, T.; Cao, G. F.; Cen, W. R.; Chambers, C.; Cleveland, B.; Coon, M.; Craycraft, A.; Daniels, T. (2019-10-18). "Search for Neutrinoless Double- β Decay with the Complete EXO-200 Dataset". Physical Review Letters. 123 (16): 161802. arXiv:1906.02723. Bibcode:2019PhRvL.123p1802A. doi:10.1103/PhysRevLett.123.161802. ISSN 0031-9007. PMID 31702371. S2CID 174803277. https://doi.org/10.1103%2FPhysRevLett.123.161802
KamLAND-Zen Collaboration; Abe, S.; Asami, S.; Eizuka, M.; Futagi, S.; Gando, A.; Gando, Y.; Gima, T.; Goto, A.; Hachiya, T.; Hata, K.; Hayashida, S.; Hosokawa, K.; Ichimura, K.; Ieki, S. (2023-01-30). "Search for the Majorana Nature of Neutrinos in the Inverted Mass Ordering Region with KamLAND-Zen". Physical Review Letters. 130 (5): 051801. arXiv:2203.02139. Bibcode:2023PhRvL.130e1801A. doi:10.1103/PhysRevLett.130.051801. PMID 36800472. S2CID 247244665. https://link.aps.org/doi/10.1103/PhysRevLett.130.051801
Klapdor-Kleingrothaus, H. V.; Dietz, A.; Harney, H. L.; Krivosheina, I. V. (21 November 2011). "Evidence for neutrinoless double beta decay". Modern Physics Letters A. 16 (37): 2409–2420. arXiv:hep-ph/0201231. Bibcode:2001MPLA...16.2409K. doi:10.1142/S0217732301005825. S2CID 18771906. /wiki/ArXiv_(identifier)
Klapdor-Kleingrothaus H.V.; et al. (2004). "Search for neutrinoless double beta decay with enriched 76Ge in Gran Sasso 1990-2003". Physics Letters B. 586 (3–4): 198–212. arXiv:hep-ph/0404088. Bibcode:2004PhLB..586..198K. doi:10.1016/j.physletb.2004.02.025. https://doi.org/10.1016%2Fj.physletb.2004.02.025
Klapdor-Kleingrothaus, H. V.; Dietz, A.; Harney, H. L.; Krivosheina, I. V. (21 November 2011). "Evidence for neutrinoless double beta decay". Modern Physics Letters A. 16 (37): 2409–2420. arXiv:hep-ph/0201231. Bibcode:2001MPLA...16.2409K. doi:10.1142/S0217732301005825. S2CID 18771906. /wiki/ArXiv_(identifier)
Rodejohann, Werner (2 May 2012). "Neutrino-less double beta decay and particle physics". International Journal of Modern Physics E. 20 (9): 1833–1930. arXiv:1106.1334. doi:10.1142/S0218301311020186. S2CID 119102859. /wiki/ArXiv_(identifier)
Rodejohann, Werner (2 May 2012). "Neutrino-less double beta decay and particle physics". International Journal of Modern Physics E. 20 (9): 1833–1930. arXiv:1106.1334. doi:10.1142/S0218301311020186. S2CID 119102859. /wiki/ArXiv_(identifier)
Bilenky, S. M.; Giunti, C. (11 February 2015). "Neutrinoless double-beta decay: A probe of physics beyond the Standard Model". International Journal of Modern Physics A. 30 (4n05): 1530001. arXiv:1411.4791. Bibcode:2015IJMPA..3030001B. doi:10.1142/S0217751X1530001X. S2CID 53459820. /wiki/ArXiv_(identifier)
Bilenky, S. M.; Giunti, C. (11 February 2015). "Neutrinoless double-beta decay: A probe of physics beyond the Standard Model". International Journal of Modern Physics A. 30 (4n05): 1530001. arXiv:1411.4791. Bibcode:2015IJMPA..3030001B. doi:10.1142/S0217751X1530001X. S2CID 53459820. /wiki/ArXiv_(identifier)
Deppisch, Frank F. (2019). A modern introduction to neutrino physics. Morgan & Claypool Publishers. ISBN 978-1-64327-679-3. 978-1-64327-679-3
Tornow, Werner (1 December 2014). "Search for Neutrinoless Double-Beta Decay". arXiv:1412.0734 [nucl-ex]. /wiki/ArXiv_(identifier)
Tornow, Werner (1 December 2014). "Search for Neutrinoless Double-Beta Decay". arXiv:1412.0734 [nucl-ex]. /wiki/ArXiv_(identifier)
Tornow, Werner (1 December 2014). "Search for Neutrinoless Double-Beta Decay". arXiv:1412.0734 [nucl-ex]. /wiki/ArXiv_(identifier)
Agostini, M.; Allardt, M.; Andreotti, E.; Bakalyarov, A. M.; Balata, M.; Barabanov, I.; Barnabé Heider, M.; Barros, N.; Baudis, L.; Bauer, C. (19 September 2013). "Results on Neutrinoless Double-Beta Decay of 76Ge from Phase I of the GERDA Experiment". Physical Review Letters. 111 (12): 122503. arXiv:1307.4720. doi:10.1103/PhysRevLett.111.122503. PMID 24093254. S2CID 53469782. /wiki/ArXiv_(identifier)
Agostini, M.; Allardt, M.; Andreotti, E.; Bakalyarov, A. M.; Balata, M.; Barabanov, I.; Barnabé Heider, M.; Barros, N.; Baudis, L.; Bauer, C. (19 September 2013). "Results on Neutrinoless Double-Beta Decay of 76Ge from Phase I of the GERDA Experiment". Physical Review Letters. 111 (12): 122503. arXiv:1307.4720. doi:10.1103/PhysRevLett.111.122503. PMID 24093254. S2CID 53469782. /wiki/ArXiv_(identifier)
Agostini, M; Allardt, M; Bakalyarov, A M; Balata, M; Barabanov, I; Baudis, L; Bauer, C; Bellotti, E; Belogurov, S; Belyaev, S T; Benato, G (September 2017). "First results from GERDA Phase II". Journal of Physics: Conference Series. 888 (1): 012030. Bibcode:2017JPhCS.888a2030A. doi:10.1088/1742-6596/888/1/012030. hdl:2434/557457. https://doi.org/10.1088%2F1742-6596%2F888%2F1%2F012030
GERDA Collaboration; Agostini, M.; Araujo, G. R.; Bakalyarov, A. M.; Balata, M.; Barabanov, I.; Baudis, L.; Bauer, C.; Bellotti, E. (2020-12-17), "Final Results of GERDA on the Search for Neutrinoless Double-$\ensuremath{\beta}$ Decay", Physical Review Letters, 125 (25): 252502, arXiv:2009.06079, doi:10.1103/PhysRevLett.125.252502, PMID 33416389, S2CID 221655689 /wiki/ArXiv_(identifier)
"Home | Legend". legend-exp.org. Retrieved 2025-03-08. https://legend-exp.org/
Tornow, Werner (1 December 2014). "Search for Neutrinoless Double-Beta Decay". arXiv:1412.0734 [nucl-ex]. /wiki/ArXiv_(identifier)
Tornow, Werner (1 December 2014). "Search for Neutrinoless Double-Beta Decay". arXiv:1412.0734 [nucl-ex]. /wiki/ArXiv_(identifier)
Anton, G.; Badhrees, I.; Barbeau, P. S.; Beck, D.; Belov, V.; Bhatta, T.; Breidenbach, M.; Brunner, T.; Cao, G. F.; Cen, W. R.; Chambers, C.; Cleveland, B.; Coon, M.; Craycraft, A.; Daniels, T. (2019-10-18). "Search for Neutrinoless Double- β Decay with the Complete EXO-200 Dataset". Physical Review Letters. 123 (16): 161802. arXiv:1906.02723. Bibcode:2019PhRvL.123p1802A. doi:10.1103/PhysRevLett.123.161802. ISSN 0031-9007. PMID 31702371. S2CID 174803277. https://doi.org/10.1103%2FPhysRevLett.123.161802
Tornow, Werner (1 December 2014). "Search for Neutrinoless Double-Beta Decay". arXiv:1412.0734 [nucl-ex]. /wiki/ArXiv_(identifier)
Nutini, I. (24 February 2020). "The CUORE Detector and Results". Low Temp Phys. 199 (1–2): 519. Bibcode:2020JLTP..199..519N. doi:10.1007/s10909-020-02402-9. hdl:11573/1410485. S2CID 213239782. /wiki/Bibcode_(identifier)
Adams, D.Q. (26 March 2020). "Improved Limit on Neutrinoless Double-Beta Decay in 130Te with CUORE". Physical Review Letters. 124 (12): 122501. arXiv:1912.10966. Bibcode:2020PhRvL.124l2501A. doi:10.1103/PhysRevLett.124.122501. PMID 32281829. S2CID 209444235. /wiki/ArXiv_(identifier)
Adams, D. Q.; Alduino, C.; Alfonso, K.; Avignone, F. T.; Azzolini, O.; Bari, G.; Bellini, F.; Benato, G.; Beretta, M.; Biassoni, M.; Branca, A. (April 2022). "Search for Majorana neutrinos exploiting millikelvin cryogenics with CUORE". Nature. 604 (7904): 53–58. Bibcode:2022Natur.604...53C. doi:10.1038/s41586-022-04497-4. ISSN 1476-4687. PMC 8986534. PMID 35388194. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8986534
Becker, Adam (2022-04-06). "CUORE team places new limits on the bizarre behavior of neutrinos". News Center. Retrieved 2022-04-08. https://newscenter.lbl.gov/2022/04/06/cuore-team-places-new-limits-on-the-bizarre-behavior-of-neutrinos/
Tornow, Werner (1 December 2014). "Search for Neutrinoless Double-Beta Decay". arXiv:1412.0734 [nucl-ex]. /wiki/ArXiv_(identifier)
Tornow, Werner (1 December 2014). "Search for Neutrinoless Double-Beta Decay". arXiv:1412.0734 [nucl-ex]. /wiki/ArXiv_(identifier)
Tornow, Werner (1 December 2014). "Search for Neutrinoless Double-Beta Decay". arXiv:1412.0734 [nucl-ex]. /wiki/ArXiv_(identifier)
Tornow, Werner (1 December 2014). "Search for Neutrinoless Double-Beta Decay". arXiv:1412.0734 [nucl-ex]. /wiki/ArXiv_(identifier)
"KamLAND-ZEN". Kavli IPMU-カブリ数物連携宇宙研究機構. 16 May 2014. Retrieved 17 July 2020. https://www.ipmu.jp/en/research-activities/research-program/kamland
Gando, A.; Gando, Y.; Hachiya, T.; Hayashi, A.; Hayashida, S.; Ikeda, H.; Inoue, K.; Ishidoshiro, K.; Karino, Y.; Koga, M.; Matsuda, S.; Mitsui, T.; Nakamura, K.; Obara, S.; Oura, T. (2016-08-16). "Search for Majorana Neutrinos Near the Inverted Mass Hierarchy Region with KamLAND-Zen". Physical Review Letters. 117 (8): 082503. arXiv:1605.02889. Bibcode:2016PhRvL.117h2503G. doi:10.1103/PhysRevLett.117.082503. ISSN 0031-9007. PMID 27588852. S2CID 204937469. https://doi.org/10.1103%2FPhysRevLett.117.082503
"KamLAND-ZEN". Kavli IPMU-カブリ数物連携宇宙研究機構. 16 May 2014. Retrieved 17 July 2020. https://www.ipmu.jp/en/research-activities/research-program/kamland
"Investigating the Neutrino Mass Scale with the ultra-low background KamLAND-Zen detector". phys.org. Retrieved 17 July 2020. https://phys.org/news/2016-08-neutrino-mass-scale-ultra-low-background.html
KamLAND-Zen Collaboration; Abe, S.; Asami, S.; Eizuka, M.; Futagi, S.; Gando, A.; Gando, Y.; Gima, T.; Goto, A.; Hachiya, T.; Hata, K.; Hayashida, S.; Hosokawa, K.; Ichimura, K.; Ieki, S. (2023-01-30). "Search for the Majorana Nature of Neutrinos in the Inverted Mass Ordering Region with KamLAND-Zen". Physical Review Letters. 130 (5): 051801. arXiv:2203.02139. Bibcode:2023PhRvL.130e1801A. doi:10.1103/PhysRevLett.130.051801. PMID 36800472. S2CID 247244665. https://link.aps.org/doi/10.1103/PhysRevLett.130.051801
Baudis, Laura (2023-01-30). "Probing Majorana Neutrinos". Physics. 16 (5): 13. arXiv:2203.02139. Bibcode:2023PhRvL.130e1801A. doi:10.1103/PhysRevLett.130.051801. PMID 36800472. S2CID 247244665. https://physics.aps.org/articles/v16/13
"Home | Legend". legend-exp.org. Retrieved 2025-03-08. https://legend-exp.org/
"The MAJORANA Neutrinoless Double-beta Decay Experiment | MAJORANA". www.npl.washington.edu. Retrieved 2025-03-08. https://www.npl.washington.edu/majorana/majorana-experiment
Licciardi, Caio (2017). "Recent Results and Status of EXO-200 and the nEXO Experiment". Proceedings of 38th International Conference on High Energy Physics — PoS(ICHEP2016). Vol. 282. p. 494. doi:10.22323/1.282.0494. /wiki/Doi_(identifier)
Licciardi, Caio (2017). "Recent Results and Status of EXO-200 and the nEXO Experiment". Proceedings of 38th International Conference on High Energy Physics — PoS(ICHEP2016). Vol. 282. p. 494. doi:10.22323/1.282.0494. /wiki/Doi_(identifier)
Adhikari, G; Al Kharusi, S; Angelico, E; Anton, G; Arnquist, I J; Badhrees, I; Bane, J; Belov, V; Bernard, E P; Bhatta, T; Bolotnikov, A; Breur, P A; Brodsky, J P; Brown, E; Brunner, T (2022-01-01). "nEXO: neutrinoless double beta decay search beyond 10 28 year half-life sensitivity". Journal of Physics G: Nuclear and Particle Physics. 49 (1): 015104. arXiv:2106.16243. Bibcode:2022JPhG...49a5104A. doi:10.1088/1361-6471/ac3631. ISSN 0954-3899. S2CID 235683381. https://iopscience.iop.org/article/10.1088/1361-6471/ac3631
"NuDoubt++ Experiment". NuDoubt++. 1 August 2024. Retrieved 1 October 2024. https://nudoubt.uni-mainz.de
Böhles, M.; et al. (NuDoubt++ Collaboration) (2024). "Combining Hybrid and Opaque Scintillator Techniques in the Search for Double Beta Plus Decays". arXiv:2407.05999 [hep-ex]. /wiki/ArXiv_(identifier)
Böhles, M.; et al. (NuDoubt++ Collaboration) (2024). "Combining Hybrid and Opaque Scintillator Techniques in the Search for Double Beta Plus Decays". arXiv:2407.05999 [hep-ex]. /wiki/ArXiv_(identifier)
Böhles, M.; et al. (NuDoubt++ Collaboration) (2024). "Combining Hybrid and Opaque Scintillator Techniques in the Search for Double Beta Plus Decays". arXiv:2407.05999 [hep-ex]. /wiki/ArXiv_(identifier)
"CMS-PAS-BPH-21-005". cms-results.web.cern.ch. Retrieved 2023-07-20. https://cms-results.web.cern.ch/cms-results/public-results/preliminary-results/BPH-21-005/index.html
"Flavoured Mysteries: searching for the tau lepton's 3 muon decay | CMS Experiment". cms.cern. Retrieved 2023-07-20. https://cms.cern/news/flavoured-mysteries-searching-tau-leptons-3-muon-decay