CM decomposition was originally introduced as set of modes diagonalizing a scattering matrix. The theory has, subsequently, been generalized by Harrington and Mautz for antennas. Harrington, Mautz and their students also successively developed several other extensions of the theory. Even though some precursors were published back in the late 1940s, the full potential of CM has remained unrecognized for an additional 40 years. The capabilities of CM were revisited in 2007 and, since then, interest in CM has dramatically increased. The subsequent boom of CM theory is reflected by the number of prominent publications and applications.
with
n
^
{\displaystyle {\boldsymbol {\hat {n}}}}
representing unitary normal to the PEC surface,
E
i
{\displaystyle {\boldsymbol {E}}^{\mathrm {i} }}
representing incident electric field intensity, and
E
s
{\displaystyle {\boldsymbol {E}}^{\mathrm {s} }}
representing scattered electric field intensity defined as
E
s
=
−
j
ω
A
−
∇
φ
,
{\displaystyle {\boldsymbol {E}}^{\mathrm {s} }=-\mathrm {j} \omega {\boldsymbol {A}}-\nabla \varphi ,}
ϵ
0
{\displaystyle \epsilon _{0}}
being vacuum permittivity,
G
(
r
,
r
′
)
{\displaystyle G\left({\boldsymbol {r}},{\boldsymbol {r}}'\right)}
being scalar Green's function
G
(
r
,
r
′
)
=
e
−
j
k
|
r
−
r
′
|
4
π
|
r
−
r
′
|
{\displaystyle G\left({\boldsymbol {r}},{\boldsymbol {r}}'\right)={\frac {\mathrm {e} ^{-\mathrm {j} k\left|{\boldsymbol {r}}-{\boldsymbol {r}}'\right|}}{4\pi \left|{\boldsymbol {r}}-{\boldsymbol {r}}'\right|}}}
with
R
{\displaystyle {\mathcal {R}}}
and
X
{\displaystyle {\mathcal {X}}}
being real and imaginary parts of impedance operator, respectively:
Z
(
⋅
)
=
R
(
⋅
)
+
j
X
(
⋅
)
.
{\displaystyle {\mathcal {Z}}(\cdot )={\mathcal {R}}(\cdot )+\mathrm {j} {\mathcal {X}}(\cdot )\,.}
The operator,
Z
{\displaystyle {\mathcal {Z}}}
is defined by
Z
(
J
)
=
n
^
×
n
^
×
E
s
(
J
)
.
(
2
)
{\displaystyle {\mathcal {Z}}\left({\boldsymbol {J}}\right)={\boldsymbol {\hat {n}}}\times {\boldsymbol {\hat {n}}}\times {\boldsymbol {E}}^{\mathrm {s} }\left({\boldsymbol {J}}\right).\qquad \mathrm {(2)} }
The outcome of (1) is a set of characteristic modes
{
J
n
}
{\displaystyle \left\{{\boldsymbol {J}}_{n}\right\}}
,
n
∈
{
1
,
2
,
…
}
{\displaystyle n\in \left\{1,2,\dots \right\}}
, accompanied by associated characteristic numbers
{
λ
n
}
{\displaystyle \left\{\lambda _{n}\right\}}
. Clearly, (1) is a generalized eigenvalue problem, which, however, cannot be analytically solved (except for a few canonical bodies). Therefore, the numerical solution described in the following paragraph is commonly employed.
Discretization
D
{\displaystyle {\mathcal {D}}}
of the body of the scatterer
Ω
{\displaystyle \Omega }
into
M
{\displaystyle M}
subdomains as
Ω
M
=
D
(
Ω
)
{\displaystyle \Omega ^{M}={\mathcal {D}}\left(\Omega \right)}
and using a set of linearly independent piece-wise continuous functions
{
ψ
n
}
{\displaystyle \left\{{\boldsymbol {\psi }}_{n}\right\}}
,
n
∈
{
1
,
…
,
N
}
{\displaystyle n\in \left\{1,\dots ,N\right\}}
, allows current density
J
{\displaystyle {\boldsymbol {J}}}
to be represented as
J
(
r
)
≈
∑
n
=
1
N
I
n
ψ
n
(
r
)
{\displaystyle {\boldsymbol {J}}\left({\boldsymbol {r}}\right)\approx \sum \limits _{n=1}^{N}I_{n}{\boldsymbol {\psi }}_{n}\left({\boldsymbol {r}}\right)}
The properties of CM decomposition are demonstrated in its matrix form.
where superscript
H
{\displaystyle ^{\mathrm {H} }}
denotes the Hermitian transpose and where
I
{\displaystyle \mathbf {I} }
represents an arbitrary surface current distribution, correspond to the radiated power and the reactive net power, respectively. The following properties can then be easily distilled:
This last relation presents the ability of characteristic modes to diagonalize the impedance operator (2) and demonstrates far field orthogonality, i.e.,
1
2
ε
0
μ
0
∫
0
2
π
∫
0
π
F
m
∗
⋅
F
n
sin
ϑ
d
ϑ
d
φ
=
δ
m
n
.
{\displaystyle {\frac {1}{2}}{\sqrt {\frac {\varepsilon _{0}}{\mu _{0}}}}\int \limits _{0}^{2\pi }\int \limits _{0}^{\pi }{\boldsymbol {F}}_{m}^{\ast }\cdot {\boldsymbol {F}}_{n}\sin \vartheta \,\mathrm {d} \vartheta \,\mathrm {d} \varphi =\delta _{mn}.}
The modal currents can be used to evaluate antenna parameters in their modal form, for example:
These quantities can be used for analysis, feeding synthesis, radiator's shape optimization, or antenna characterization.
CM decomposition has recently been implemented in major electromagnetic simulators, namely in FEKO, CST-MWS, and WIPL-D. Other packages are about to support it soon, for example HFSS and CEM One. In addition, there is a plethora of in-house and academic packages which are capable of evaluating CM and many associated parameters.
CM are useful to understand radiator's operation better. They have been used with great success for many practical purposes. However, it is important to stress that they are not perfect and it is often better to use other formulations such as energy modes, radiation modes, stored energy modes or radiation efficiency modes.
Garbacz, R.J. (1965). "Modal expansions for resonance scattering phenomena". Proceedings of the IEEE. 53 (8): 856–864. doi:10.1109/proc.1965.4064. ISSN 0018-9219. /wiki/Doi_(identifier)
Garbacz, R. J., "A Generalized Expansion for Radiated and Scattered Fields," PhD thesis, Department of Electrical Engineering, The Ohio State Univ., 1968.
Harrington, R.; Mautz, J. (1971). "Theory of characteristic modes for conducting bodies". IEEE Transactions on Antennas and Propagation. 19 (5): 622–628. Bibcode:1971ITAP...19..622H. doi:10.1109/tap.1971.1139999. ISSN 0096-1973. /wiki/Roger_F._Harrington
Harrington, R.; Mautz, J. (1971). "Computation of characteristic modes for conducting bodies". IEEE Transactions on Antennas and Propagation. 19 (5): 629–639. Bibcode:1971ITAP...19..629H. doi:10.1109/tap.1971.1139990. ISSN 0096-1973. /wiki/Roger_F._Harrington
Chang, Y.; Harrington, R. (1977). "A surface formulation for characteristic modes of material bodies". IEEE Transactions on Antennas and Propagation. 25 (6): 789–795. Bibcode:1977ITAP...25..789C. doi:10.1109/tap.1977.1141685. ISSN 0096-1973. /wiki/Roger_F._Harrington
Harrington, R.F.; Mautz, J.R. (1985). "Characteristic Modes for Aperture Problems". IEEE Transactions on Microwave Theory and Techniques. 33 (6): 500–505. Bibcode:1985ITMTT..33..500H. doi:10.1109/tmtt.1985.1133105. ISSN 0018-9480. /wiki/Roger_F._Harrington
Harrington, R. F.; Mautz, J.R.; Chang, Y. (March 1972). "Characteristic modes for dielectric and magnetic bodies". IEEE Transactions on Antennas and Propagation. 20 (2): 194–198. Bibcode:1972ITAP...20..194H. doi:10.1109/TAP.1972.1140154. /wiki/Roger_F._Harrington
El-Hajj, A.; Kabalan, K.Y.; Harrington, R.F. (1993). "Characteristic mode analysis off electromagnetic coupling through multiple slots in a conducting plane". IEE Proceedings H - Microwaves, Antennas and Propagation. 140 (6): 421. doi:10.1049/ip-h-2.1993.0069. ISSN 0950-107X. /wiki/Roger_F._Harrington
Montgomery, C. G.; Dicke, R.H.; Purcell, E. M., Principles of Microwave Circuits, Section 9.24, New York, United States: McGraw-Hill, 1948.
Cabedo-Fabres, Marta; Antonino-Daviu, Eva; Valero-Nogueira, Alejandro; Bataller, Miguel (2007). "The Theory of Characteristic Modes Revisited: A Contribution to the Design of Antennas for Modern Applications". IEEE Antennas and Propagation Magazine. 49 (5): 52–68. Bibcode:2007IAPM...49...52C. doi:10.1109/map.2007.4395295. ISSN 1045-9243. S2CID 32826951. /wiki/Bibcode_(identifier)
Capek, Miloslav; Losenicky, Vit; Jelinek, Lukas; Gustafsson, Mats (2017). "Validating the Characteristic Modes Solvers". IEEE Transactions on Antennas and Propagation. 65 (8): 4134–4145. arXiv:1702.07037. Bibcode:2017ITAP...65.4134C. doi:10.1109/tap.2017.2708094. ISSN 0018-926X. S2CID 20773017. /wiki/ArXiv_(identifier)
Harrington, R. F., Field Computation by Moment Methods, Wiley -- IEEE Press, 1993. /wiki/Roger_F._Harrington
Schab, K. R.; Bernhard, J. T. (2017). "A Group Theory Rule for Predicting Eigenvalue Crossings in Characteristic Mode Analyses". IEEE Antennas and Wireless Propagation Letters. 16: 944–947. Bibcode:2017IAWPL..16..944S. doi:10.1109/lawp.2016.2615041. ISSN 1536-1225. S2CID 29709098. /wiki/Bibcode_(identifier)
Capek, Miloslav; Hazdra, Pavel; Hamouz, Pavel; Eichler, Jan (2011). "A method for tracking characteristic numbers and vectors". Progress in Electromagnetics Research B. 33: 115–134. doi:10.2528/pierb11060209. ISSN 1937-6472. https://doi.org/10.2528%2Fpierb11060209
Raines, Bryan D.; Rojas, Roberto G. (2012). "Wideband Characteristic Mode Tracking". IEEE Transactions on Antennas and Propagation. 60 (7): 3537–3541. Bibcode:2012ITAP...60.3537R. doi:10.1109/tap.2012.2196914. ISSN 0018-926X. S2CID 22449106. /wiki/Bibcode_(identifier)
Ludick, D.J.; Jakobus, U.; Vogel, M. (2014). A tracking algorithm for the eigenvectors calculated with characteristic mode analysis. Proceedings of the 8th European Conference on Antennas and Propagation. IEEE. pp. 569–572. doi:10.1109/eucap.2014.6901820. ISBN 978-88-907018-4-9. 978-88-907018-4-9
Miers, Zachary; Lau, Buon Kiong (2015). "Wideband Characteristic Mode Tracking Utilizing Far-Field Patterns". IEEE Antennas and Wireless Propagation Letters. 14: 1658–1661. Bibcode:2015IAWPL..14.1658M. doi:10.1109/lawp.2015.2417351. ISSN 1536-1225. S2CID 113730. http://lup.lub.lu.se/record/5205508
Safin, Eugen; Manteuffel, Dirk (2016). "Advanced Eigenvalue Tracking of Characteristic Modes". IEEE Transactions on Antennas and Propagation. 64 (7): 2628–2636. Bibcode:2016ITAP...64.2628S. doi:10.1109/tap.2016.2556698. ISSN 0018-926X. S2CID 5243996. /wiki/Bibcode_(identifier)
Capek, Miloslav; Losenicky, Vit; Jelinek, Lukas; Gustafsson, Mats (2017). "Validating the Characteristic Modes Solvers". IEEE Transactions on Antennas and Propagation. 65 (8): 4134–4145. arXiv:1702.07037. Bibcode:2017ITAP...65.4134C. doi:10.1109/tap.2017.2708094. ISSN 0018-926X. S2CID 20773017. /wiki/ArXiv_(identifier)
Harrington, R.; Mautz, J. (1971). "Theory of characteristic modes for conducting bodies". IEEE Transactions on Antennas and Propagation. 19 (5): 622–628. Bibcode:1971ITAP...19..622H. doi:10.1109/tap.1971.1139999. ISSN 0096-1973. /wiki/Roger_F._Harrington
Capek, Miloslav; Hazdra, Pavel; Eichler, Jan (9 January 2015). "Evaluating radiation efficiency from characteristic currents". IET Microwaves, Antennas & Propagation. 9 (1): 10–15. doi:10.1049/iet-map.2013.0473. ISSN 1751-8725. S2CID 108505219. https://doi.org/10.1049%2Fiet-map.2013.0473
Capek, Miloslav; Hazdra, Pavel; Eichler, Jan (2012). "A Method for the Evaluation of Radiation Q Based on Modal Approach". IEEE Transactions on Antennas and Propagation. 60 (10): 4556–4567. Bibcode:2012ITAP...60.4556C. doi:10.1109/tap.2012.2207329. ISSN 0018-926X. S2CID 38814430. /wiki/Bibcode_(identifier)
Wu, Qi; Su, Donglin (2013). "A Broadband Model of the Characteristic Currents for Rectangular Plates". IEEE Transactions on Electromagnetic Compatibility. 55 (4): 725–732. doi:10.1109/temc.2012.2221718. ISSN 0018-9375. S2CID 25382863. /wiki/Doi_(identifier)
Vogel, Martin; Gampala, Gopinath; Ludick, Danie; Reddy, C.J. (2015). "Characteristic Mode Analysis: Putting Physics back into Simulation". IEEE Antennas and Propagation Magazine. 57 (2): 307–317. Bibcode:2015IAPM...57..307V. doi:10.1109/map.2015.2414670. ISSN 1045-9243. S2CID 40055108. /wiki/Bibcode_(identifier)
Yang, Binbin; Adams, Jacob J. (2016). "Computing and Visualizing the Input Parameters of Arbitrary Planar Antennas via Eigenfunctions". IEEE Transactions on Antennas and Propagation. 64 (7): 2707–2718. Bibcode:2016ITAP...64.2707Y. doi:10.1109/tap.2016.2554604. ISSN 0018-926X. S2CID 8934250. https://doi.org/10.1109%2Ftap.2016.2554604
Li, Hui; Miers, Zachary Thomas; Lau, Buon Kiong (2014). "Design of Orthogonal MIMO Handset Antennas Based on Characteristic Mode Manipulation at Frequency Bands Below 1 GHz" (PDF). IEEE Transactions on Antennas and Propagation. 62 (5): 2756–2766. Bibcode:2014ITAP...62.2756L. doi:10.1109/tap.2014.2308530. ISSN 0018-926X. S2CID 4799078. http://portal.research.lu.se/ws/files/42807229/li_tap2014.pdf
Deng, Changjiang; Feng, Zhenghe; Hum, Sean Victor (2016). "MIMO Mobile Handset Antenna Merging Characteristic Modes for Increased Bandwidth". IEEE Transactions on Antennas and Propagation. 64 (7): 2660–2667. Bibcode:2016ITAP...64.2660D. doi:10.1109/tap.2016.2537358. ISSN 0018-926X. S2CID 24079958. /wiki/Bibcode_(identifier)
Yang, Binbin; Adams, Jacob J. (2016). "Systematic Shape Optimization of Symmetric MIMO Antennas Using Characteristic Modes". IEEE Transactions on Antennas and Propagation. 64 (7): 2668–2678. Bibcode:2016ITAP...64.2668Y. doi:10.1109/tap.2015.2473703. ISSN 0018-926X. S2CID 46283754. /wiki/Bibcode_(identifier)
Eichler, J.; Hazdra, P.; Capek, M.; Korinek, T.; Hamouz, P. (2011). "Design of a Dual-Band Orthogonally Polarized L-Probe-Fed Fractal Patch Antenna Using Modal Methods". IEEE Antennas and Wireless Propagation Letters. 10: 1389–1392. Bibcode:2011IAWPL..10.1389E. doi:10.1109/lawp.2011.2178811. ISSN 1536-1225. S2CID 35839331. /wiki/Bibcode_(identifier)
Rezaiesarlak, Reza; Manteghi, Majid (2015). "Design of Chipless RFID Tags Based on Characteristic Mode Theory (CMT)". IEEE Transactions on Antennas and Propagation. 63 (2): 711–718. Bibcode:2015ITAP...63..711R. doi:10.1109/tap.2014.2382640. ISSN 0018-926X. S2CID 25302365. /wiki/Bibcode_(identifier)
Bohannon, Nicole L.; Bernhard, Jennifer T. (2015). "Design Guidelines Using Characteristic Mode Theory for Improving the Bandwidth of PIFAs". IEEE Transactions on Antennas and Propagation. 63 (2): 459–465. Bibcode:2015ITAP...63..459B. doi:10.1109/tap.2014.2374213. ISSN 0018-926X. S2CID 25557684. /wiki/Bibcode_(identifier)
Chen, Yikai; Wang, Chao-Fu (2014). "Electrically Small UAV Antenna Design Using Characteristic Modes". IEEE Transactions on Antennas and Propagation. 62 (2): 535–545. Bibcode:2014ITAP...62..535C. doi:10.1109/tap.2013.2289999. ISSN 0018-926X. S2CID 24095192. /wiki/Bibcode_(identifier)
Austin, B.A.; Murray, K.P. (1998). "The application of characteristic-mode techniques to vehicle-mounted NVIS antennas". IEEE Antennas and Propagation Magazine. 40 (1): 7–21. Bibcode:1998IAPM...40....7A. doi:10.1109/74.667319. ISSN 1045-9243. /wiki/Bibcode_(identifier)
Gustafsson, M.; Tayli, D.; Ehrenborg, C.; Cismasu, M.; Norbedo, S. (May–June 2016). "Antenna current optimization using MATLAB and CVX". FERMAT. 15: 1–29. https://www.e-fermat.org/articles/gustafsson-art-2016-vol15-may-jun-005/
Adams, Jacob J.; Bernhard, Jennifer T. (2013). "Broadband Equivalent Circuit Models for Antenna Impedances and Fields Using Characteristic Modes". IEEE Transactions on Antennas and Propagation. 61 (8): 3985–3994. Bibcode:2013ITAP...61.3985A. doi:10.1109/tap.2013.2261852. ISSN 0018-926X. S2CID 36450355. /wiki/Bibcode_(identifier)
Safin, Eugen; Manteuffel, Dirk (2015). "Manipulation of Characteristic Wave Modes by Impedance Loading". IEEE Transactions on Antennas and Propagation. 63 (4): 1756–1764. Bibcode:2015ITAP...63.1756S. doi:10.1109/tap.2015.2401586. ISSN 0018-926X. S2CID 43837433. /wiki/Bibcode_(identifier)
Hassan, Ahmed M.; Vargas-Lara, Fernando; Douglas, Jack F.; Garboczi, Edward J. (2016). "Electromagnetic Resonances of Individual Single-Walled Carbon Nanotubes With Realistic Shapes: A Characteristic Modes Approach". IEEE Transactions on Antennas and Propagation. 64 (7): 2743–2757. Bibcode:2016ITAP...64.2743H. doi:10.1109/tap.2016.2526046. ISSN 0018-926X. S2CID 22633919. https://doi.org/10.1109%2Ftap.2016.2526046
Rabah, M. Hassanein; Seetharamdoo, Divitha; Berbineau, Marion (2016). "Analysis of Miniature Metamaterial and Magnetodielectric Arbitrary-Shaped Patch Antennas Using Characteristic Modes: Evaluation of the $Q$ Factor". IEEE Transactions on Antennas and Propagation. 64 (7): 2719–2731. Bibcode:2016ITAP...64.2719R. doi:10.1109/tap.2016.2571723. ISSN 0018-926X. S2CID 23639874. /wiki/Bibcode_(identifier)
Rabah, M. Hassanein; Seetharamdoo, Divitha; Berbineau, Marion; De Lustrac, Andre (2016). "New Metrics for Artificial Magnetism From Metal-Dielectric Metamaterial Based on the Theory of Characteristic Modes". IEEE Antennas and Wireless Propagation Letters. 15: 460–463. Bibcode:2016IAWPL..15..460R. doi:10.1109/lawp.2015.2452269. ISSN 1536-1225. S2CID 21297328. /wiki/Bibcode_(identifier)
Capek, Miloslav; Losenicky, Vit; Jelinek, Lukas; Gustafsson, Mats (2017). "Validating the Characteristic Modes Solvers". IEEE Transactions on Antennas and Propagation. 65 (8): 4134–4145. arXiv:1702.07037. Bibcode:2017ITAP...65.4134C. doi:10.1109/tap.2017.2708094. ISSN 0018-926X. S2CID 20773017. /wiki/ArXiv_(identifier)
Dai, Qi I.; Wu, Junwei; Gan, Hui; Liu, Qin S.; Chew, Weng Cho; Sha, Wei E. I. (2016). "Large-Scale Characteristic Mode Analysis With Fast Multipole Algorithms". IEEE Transactions on Antennas and Propagation. 64 (7): 2608–2616. Bibcode:2016ITAP...64.2608D. doi:10.1109/tap.2016.2526083. ISSN 0018-926X. https://doi.org/10.1109%2Ftap.2016.2526083
Harrington, R. F.; Mautz, J.R.; Chang, Y. (March 1972). "Characteristic modes for dielectric and magnetic bodies". IEEE Transactions on Antennas and Propagation. 20 (2): 194–198. Bibcode:1972ITAP...20..194H. doi:10.1109/TAP.1972.1140154. /wiki/Roger_F._Harrington
Guo, Liwen; Chen, Yikai; Yang, Shiwen (2017). "Characteristic Mode Formulation for Dielectric Coated Conducting Bodies". IEEE Transactions on Antennas and Propagation. 65 (3): 1248–1258. Bibcode:2017ITAP...65.1248G. doi:10.1109/tap.2016.2647687. ISSN 0018-926X. S2CID 22204106. /wiki/Bibcode_(identifier)
Dai, Qi I.; Liu, Qin S.; Gan, Hui U. I.; Chew, Weng Cho (2015). "Combined Field Integral Equation-Based Theory of Characteristic Mode". IEEE Transactions on Antennas and Propagation. 63 (9): 3973–3981. arXiv:1503.01449. Bibcode:2015ITAP...63.3973D. doi:10.1109/tap.2015.2452938. ISSN 0018-926X. S2CID 5981282. /wiki/ArXiv_(identifier)
Tzanidis, Ioannis; Sertel, Kubilay; Volakis, John L. (2012). "Characteristic Excitation Taper for Ultrawideband Tightly Coupled Antenna Arrays". IEEE Transactions on Antennas and Propagation. 60 (4): 1777–1784. Bibcode:2012ITAP...60.1777T. doi:10.1109/tap.2012.2186269. ISSN 0018-926X. S2CID 6695379. /wiki/Bibcode_(identifier)
Altair, FEKO, 2017. Archived 2017-08-04 at the Wayback Machine https://www.feko.info/
Dassault Systemes, CST Computer Simulation Technology, [Online: CST-MWS, 2017. https://www.cst.com/
WIPL-D d.o.o., [Online: WIPL-D, 2017. https://www.wipl-d.com/
ANSYS, [Online: HFSS, 2017. http://www.ansys.com/products/electronics/ansys-hfss
ESI Group, [Online: CEM One, 2017. https://www.esi-group.com/software-solutions/virtual-environment/electromagnetics/cem-one-solution
Schab, Kurt R.; Bernhard, Jennifer T. (2015). "Radiation and Energy Storage Current Modes on Conducting Structures". IEEE Transactions on Antennas and Propagation. 63 (12): 5601–5611. Bibcode:2015ITAP...63.5601S. doi:10.1109/tap.2015.2490664. ISSN 0018-926X. S2CID 32795820. /wiki/Bibcode_(identifier)
Schab, Kurt R.; Bernhard, Jennifer T. (2015). "Radiation and Energy Storage Current Modes on Conducting Structures". IEEE Transactions on Antennas and Propagation. 63 (12): 5601–5611. Bibcode:2015ITAP...63.5601S. doi:10.1109/tap.2015.2490664. ISSN 0018-926X. S2CID 32795820. /wiki/Bibcode_(identifier)
Gustafsson, M.; Tayli, D.; Ehrenborg, C.; Cismasu, M.; Norbedo, S. (May–June 2016). "Antenna current optimization using MATLAB and CVX". FERMAT. 15: 1–29. https://www.e-fermat.org/articles/gustafsson-art-2016-vol15-may-jun-005/
Jelinek, Lukas; Capek, Miloslav (2017). "Optimal Currents on Arbitrarily Shaped Surfaces". IEEE Transactions on Antennas and Propagation. 65 (1): 329–341. arXiv:1602.05520. Bibcode:2017ITAP...65..329J. doi:10.1109/tap.2016.2624735. ISSN 0018-926X. S2CID 27699901. /wiki/ArXiv_(identifier)