The relative speed of electrical synapses also allows for many neurons to fire synchronously. Because of the speed of transmission, electrical synapses are found in escape mechanisms and other processes that require quick responses, such as the response to danger of the sea hare Aplysia, which quickly releases large quantities of ink to obscure enemies' vision.
Normally, current carried by ions could travel in either direction through this type of synapse. However, sometimes the junctions are rectifying synapses, containing voltage-gated ion channels that open in response to depolarization of an axon's plasma membrane, and prevent current from traveling in one of the two directions. Some channels may also close in response to increased calcium (Ca2+) or hydrogen (H+) ion concentration, so as not to spread damage from one cell to another.
The model of a reticular network of directly interconnected cells was one of the early hypotheses for the organization of the nervous system at the beginning of the 20th century. This reticular hypothesis was considered to conflict directly with the now predominant neuron doctrine, a model in which isolated, individual neurons signal to each other chemically across synaptic gaps. These two models came into sharp contrast at the award ceremony for the 1906 Nobel Prize in Physiology or Medicine, in which the award went jointly to Camillo Golgi, a reticularist and widely recognized cell biologist, and Santiago Ramón y Cajal, the champion of the neuron doctrine and the father of modern neuroscience. Golgi delivered his Nobel lecture first, in part detailing evidence for a reticular model of the nervous system. Ramón y Cajal then took the podium and refuted Golgi's conclusions in his lecture. Modern understanding of the coexistence of chemical and electrical synapses, however, suggests that both models are physiologically significant; it could be said that the Nobel committee acted with great foresight in awarding the Prize jointly.
There was substantial debate on whether the transmission of information between neurons was chemical or electrical in the first decades of the twentieth century, but chemical synaptic transmission was seen as the only answer after Otto Loewi's demonstration of chemical communication between neurons and heart muscle. Thus, the discovery of electrical communication was surprising.
Electrical synapses were first demonstrated between escape-related giant neurons in crayfish in the late 1950s, and were later found in vertebrates.
Kandel, ER; Schwartz, JH; Jessell, TM (2000). Principles of Neural Science (4th ed.). New York: McGraw-Hill. ISBN 978-0-8385-7701-1. 978-0-8385-7701-1
Hormuzdi SG, Filippov MA, Mitropoulou G, Monyer H, Bruzzone R (March 2004). "Electrical synapses: a dynamic signaling system that shapes the activity of neuronal networks". Biochim. Biophys. Acta. 1662 (1–2): 113–37. doi:10.1016/j.bbamem.2003.10.023. PMID 15033583. https://doi.org/10.1016%2Fj.bbamem.2003.10.023
Kandel, ER; Schwartz, JH; Jessell, TM (2000). Principles of Neural Science (4th ed.). New York: McGraw-Hill. ISBN 978-0-8385-7701-1. 978-0-8385-7701-1
Purves, Dale; Williams, Stephen Mark, eds. (2004). Neuroscience (3rd ed.). Sunderland, Mass: Sinauer Associates. ISBN 978-0-87893-915-2. 978-0-87893-915-2
Bennett, M. V. L. (1966). "PHYSIOLOGY OF ELECTROTONIC JUNCTIONS*". Annals of the New York Academy of Sciences. 137 (2): 509–539. doi:10.1111/j.1749-6632.1966.tb50178.x. ISSN 0077-8923. https://nyaspubs.onlinelibrary.wiley.com/doi/10.1111/j.1749-6632.1966.tb50178.x
Connors, Barry W.; Long, Michael A. (2004-07-21). "ELECTRICAL SYNAPSES IN THE MAMMALIAN BRAIN". Annual Review of Neuroscience. 27 (1): 393–418. doi:10.1146/annurev.neuro.26.041002.131128. ISSN 0147-006X. https://www.annualreviews.org/doi/10.1146/annurev.neuro.26.041002.131128
Connors, Barry W.; Long, Michael A. (2004-07-21). "ELECTRICAL SYNAPSES IN THE MAMMALIAN BRAIN". Annual Review of Neuroscience. 27 (1): 393–418. doi:10.1146/annurev.neuro.26.041002.131128. ISSN 0147-006X. https://www.annualreviews.org/doi/10.1146/annurev.neuro.26.041002.131128
Bennett, Michael V.L; Zukin, R.Suzanne (2004). "Electrical Coupling and Neuronal Synchronization in the Mammalian Brain". Neuron. 41 (4): 495–511. doi:10.1016/S0896-6273(04)00043-1. https://linkinghub.elsevier.com/retrieve/pii/S0896627304000431
Makarenko, Vladimir; Llinás, Rodolfo (1998-12-22). "Experimentally determined chaotic phase synchronization in a neuronal system". Proceedings of the National Academy of Sciences. 95 (26): 15747–15752. doi:10.1073/pnas.95.26.15747. ISSN 0027-8424. PMC 28115. PMID 9861041. https://pnas.org/doi/full/10.1073/pnas.95.26.15747
Korn, Henri; Faure, Philippe (2003-09-01). "Is there chaos in the brain? II. Experimental evidence and related models". Comptes Rendus. Biologies. 326 (9): 787–840. doi:10.1016/j.crvi.2003.09.011. ISSN 1768-3238. https://comptes-rendus.academie-sciences.fr/biologies/articles/10.1016/j.crvi.2003.09.011/
Purves, Dale; George J. Augustine; David Fitzpatrick; William C. Hall; Anthony-Samuel LaMantia; James O. McNamara & Leonard E. White (2008). Neuroscience (4th ed.). Sinauer Associates. pp. 85–88. ISBN 978-0-87893-697-7. 978-0-87893-697-7
Purves, Dale; George J. Augustine; David Fitzpatrick; William C. Hall; Anthony-Samuel LaMantia; Richard D. Mooney; Leonard E. White & Michael L. Platt (2018). Neuroscience (6th ed.). Oxford University Press. pp. 86–87. ISBN 978-1605353807. 978-1605353807
Gibson JR, Beierlein M, Connors BW (January 2005). "Functional properties of electrical synapses between inhibitory interneurons of neocortical layer 4". J. Neurophysiol. 93 (1): 467–80. doi:10.1152/jn.00520.2004. PMID 15317837. /wiki/Doi_(identifier)
Hormuzdi SG, Filippov MA, Mitropoulou G, Monyer H, Bruzzone R (March 2004). "Electrical synapses: a dynamic signaling system that shapes the activity of neuronal networks". Biochim. Biophys. Acta. 1662 (1–2): 113–37. doi:10.1016/j.bbamem.2003.10.023. PMID 15033583. https://doi.org/10.1016%2Fj.bbamem.2003.10.023
Bennett MV, Zukin RS (February 2004). "Electrical coupling and neuronal synchronization in the Mammalian brain". Neuron. 41 (4): 495–511. doi:10.1016/S0896-6273(04)00043-1. PMID 14980200. S2CID 18566176. https://doi.org/10.1016%2FS0896-6273%2804%2900043-1
Hormuzdi SG, Filippov MA, Mitropoulou G, Monyer H, Bruzzone R (March 2004). "Electrical synapses: a dynamic signaling system that shapes the activity of neuronal networks". Biochim. Biophys. Acta. 1662 (1–2): 113–37. doi:10.1016/j.bbamem.2003.10.023. PMID 15033583. https://doi.org/10.1016%2Fj.bbamem.2003.10.023
Kandel, Schwartz & Jessell 2000, pp. 178–180 - Kandel, ER; Schwartz, JH; Jessell, TM (2000). Principles of Neural Science (4th ed.). New York: McGraw-Hill. ISBN 978-0-8385-7701-1.
Hormuzdi SG, Filippov MA, Mitropoulou G, Monyer H, Bruzzone R (March 2004). "Electrical synapses: a dynamic signaling system that shapes the activity of neuronal networks". Biochim. Biophys. Acta. 1662 (1–2): 113–37. doi:10.1016/j.bbamem.2003.10.023. PMID 15033583. https://doi.org/10.1016%2Fj.bbamem.2003.10.023
Bennett MV, Zukin RS (February 2004). "Electrical coupling and neuronal synchronization in the Mammalian brain". Neuron. 41 (4): 495–511. doi:10.1016/S0896-6273(04)00043-1. PMID 14980200. S2CID 18566176. https://doi.org/10.1016%2FS0896-6273%2804%2900043-1
Kandel, Schwartz & Jessell 2000, p. 178 - Kandel, ER; Schwartz, JH; Jessell, TM (2000). Principles of Neural Science (4th ed.). New York: McGraw-Hill. ISBN 978-0-8385-7701-1.
Bennett MV, Zukin RS (February 2004). "Electrical coupling and neuronal synchronization in the Mammalian brain". Neuron. 41 (4): 495–511. doi:10.1016/S0896-6273(04)00043-1. PMID 14980200. S2CID 18566176. https://doi.org/10.1016%2FS0896-6273%2804%2900043-1
Rydin Gorjão, Leonardo; Saha, Arindam; Ansmann, Gerrit; Feudel, Ulrike; Lehnertz, Klaus (2018-10-01). "Complexity and irreducibility of dynamics on networks of networks". Chaos: An Interdisciplinary Journal of Nonlinear Science. 28 (10). arXiv:1808.00305. doi:10.1063/1.5039483. ISSN 1054-1500. https://pubs.aip.org/aip/cha/article-abstract/28/10/106306/1051711/Complexity-and-irreducibility-of-dynamics-on?redirectedFrom=fulltext
Bennett MV, Zukin RS (February 2004). "Electrical coupling and neuronal synchronization in the Mammalian brain". Neuron. 41 (4): 495–511. doi:10.1016/S0896-6273(04)00043-1. PMID 14980200. S2CID 18566176. https://doi.org/10.1016%2FS0896-6273%2804%2900043-1
Dr. John O'Brien || Faculty Biography || The Department of Ophthalmology and Visual Science at the University of Texas Medical School at Houston https://med.uth.edu/ibp/faculty/john-obrien/
Gibson JR, Beierlein M, Connors BW (January 2005). "Functional properties of electrical synapses between inhibitory interneurons of neocortical layer 4". J. Neurophysiol. 93 (1): 467–80. doi:10.1152/jn.00520.2004. PMID 15317837. /wiki/Doi_(identifier)
Bennett MV, Zukin RS (February 2004). "Electrical coupling and neuronal synchronization in the Mammalian brain". Neuron. 41 (4): 495–511. doi:10.1016/S0896-6273(04)00043-1. PMID 14980200. S2CID 18566176. https://doi.org/10.1016%2FS0896-6273%2804%2900043-1
Kandel, Schwartz & Jessell 2000, p. 180 - Kandel, ER; Schwartz, JH; Jessell, TM (2000). Principles of Neural Science (4th ed.). New York: McGraw-Hill. ISBN 978-0-8385-7701-1.
Kandel, ER; Schwartz, JH; Jessell, TM (2000). Principles of Neural Science (4th ed.). New York: McGraw-Hill. ISBN 978-0-8385-7701-1. 978-0-8385-7701-1
Hormuzdi SG, Filippov MA, Mitropoulou G, Monyer H, Bruzzone R (March 2004). "Electrical synapses: a dynamic signaling system that shapes the activity of neuronal networks". Biochim. Biophys. Acta. 1662 (1–2): 113–37. doi:10.1016/j.bbamem.2003.10.023. PMID 15033583. https://doi.org/10.1016%2Fj.bbamem.2003.10.023
Hormuzdi SG, Filippov MA, Mitropoulou G, Monyer H, Bruzzone R (March 2004). "Electrical synapses: a dynamic signaling system that shapes the activity of neuronal networks". Biochim. Biophys. Acta. 1662 (1–2): 113–37. doi:10.1016/j.bbamem.2003.10.023. PMID 15033583. https://doi.org/10.1016%2Fj.bbamem.2003.10.023
Kandel, Schwartz & Jessell 2000, p. 180 - Kandel, ER; Schwartz, JH; Jessell, TM (2000). Principles of Neural Science (4th ed.). New York: McGraw-Hill. ISBN 978-0-8385-7701-1.
Kandel, Schwartz & Jessell 2000, p. 180 - Kandel, ER; Schwartz, JH; Jessell, TM (2000). Principles of Neural Science (4th ed.). New York: McGraw-Hill. ISBN 978-0-8385-7701-1.
Palacios-Prado, Nicolas; et al. (Mar 2013). "Intracellular magnesium-dependent modulation of gap junction channels formed by neuronal connexin36". Journal of Neuroscience. 33 (11): 4741–53. doi:10.1523/JNEUROSCI.2825-12.2013. PMC 3635812. PMID 23486946. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3635812
Activity-Dependent; Synapses, Electrical; Haas, Julie S.; et al. (2011). "Activity-dependent long-term depression of electrical synapses". Science. 334 (6054): 389–93. Bibcode:2011Sci...334..389H. doi:10.1126/science.1207502. PMC 10921920. PMID 22021860. S2CID 35398480. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10921920
Electrical synapses in the mammalian brain, Connors & Long, "Annu Rev Neurosci" 2004;27:393-418
Eugenin, Eliseo A.; Basilio, Daniel; Sáez, Juan C.; Orellana, Juan A.; Raine, Cedric S.; Bukauskas, Feliksas; Bennett, Michael V. L.; Berman, Joan W. (2012-09-01). "The role of gap junction channels during physiologic and pathologic conditions of the human central nervous system". Journal of Neuroimmune Pharmacology. 7 (3): 499–518. doi:10.1007/s11481-012-9352-5. ISSN 1557-1904. PMC 3638201. PMID 22438035. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3638201
Pereda, Alberto E.; Curti, Sebastian; Hoge, Gregory; Cachope, Roger; Flores, Carmen E.; Rash, John E. (2013-01-01). "Gap junction-mediated electrical transmission: regulatory mechanisms and plasticity". Biochimica et Biophysica Acta (BBA) - Biomembranes. 1828 (1): 134–146. doi:10.1016/j.bbamem.2012.05.026. ISSN 0006-3002. PMC 3437247. PMID 22659675. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3437247
Pappas, George D.; Bennett, Michael V. L. (1966). "Specialized junctions involved in electrical transmission between neurons". Annals of the New York Academy of Sciences. 137 (2): 495–508. doi:10.1111/j.1749-6632.1966.tb50177.x. ISSN 0077-8923. https://nyaspubs.onlinelibrary.wiley.com/doi/10.1111/j.1749-6632.1966.tb50177.x
Purves, Dale; George J. Augustine; David Fitzpatrick; William C. Hall; Anthony-Samuel LaMantia; James O. McNamara & Leonard E. White (2008). Neuroscience (4th ed.). Sinauer Associates. pp. 85–88. ISBN 978-0-87893-697-7. 978-0-87893-697-7